REPUBLIC OF KOREA

The Republic of Korea is one of NATO’s “Partners Across the Globe”. Building on dialogue and cooperation that began in 2005, relations between NATO and the Republic of Korea were deepened with the signature of an Individual Partnership and Cooperation Programme (IPCP) in September 2012. The most recent IPCP promotes political dialogue and practical cooperation in a number of joint priority areas, including cooperation under NATO’s Science for Peace and Security (SPS) Programme. At present, the leading areas for cooperation with Korea include Cyber Defence, Security-related Advanced Technology and CBRN Defence. Below are some examples of ongoing and completed projects with Korea within the framework of the NATO SPS Programme.

Cooperative Activities

NERVE AGENT DETECTION USING A COMPACT INFRARED SENSOR

This Multi-Year Project (MYP) was launched in August 2019 with the aim of developing a high-sensitivity micro-machined sensor head for the detection of nerve agents. The sensor head will use state-of-the-art technology, and will be integrated in a lightweight 3D printed package to produce a stand-alone compact sensor with integrated display. The sensor will be delivered to the end user (the Ministry of Defence of Spain) for laboratory testing and further joint sensor development, for the ultimate deployment of the sensor in unmanned vehicles for wireless, remote contaminated site monitoring. This project is led by experts from the Republic of Korea and Spain, with experts from the United States. [ref. G5640].
DEVELOPMENT OF MICRO-SCALE, BIO-INSPIRED PASSIVE DRONE SYSTEM

This MYP, launched in 2020, aims to develop passive bio-inspired atmospheric floating vehicles (used in swarm) to allow for the characterization of atmospheric flows of interest. This will result in more effective forecasting of the spread of chemical, biological, radiological and nuclear (CBRN) agents or emissions from man-made or natural catastrophes. CBRN agents are difficult to detect and spread unpredictably. Risk management is crucial in effectively handling the threat of CBRN agents in catastrophes, and innovating and improving upon the methods currently available is of vital importance. This project is led by the Republic of Korea and Canada. [ref. G5638].

MICROWAVE IMAGING CURTAIN

This ongoing MYP aims to develop an affordable solution to the challenge of detecting firearms or explosives concealed by a person in a mass-transit scenario, without disturbing the continuous flow of pedestrians. The project is included in the overall context of the DEXTER (Detection of EXplosives and firearms to counter TERrorism) programme, which aims to detect explosives and firearms in a mass-transit environment without disrupting the flow of pedestrians. The project will design, develop and test a radar-based imaging device for the non-checkpoint detection of explosives and firearms. Taking into account current regulations on the impact of radiation exposure to human health, the project will integrate high-performance microwave modules, and will develop specific signal processing algorithms to construct 3D images of dangerous objects carried by moving persons. This project is led by France and Ukraine, and also involves experts from the Republic of Korea. [ref. G5395].

IMPROVING CYBER DEFENCE CAPABILITIES THROUGH CLOUD TECHNOLOGY

This MYP was launched in 2015 and closed in November 2018. It aimed to develop a solution for preserving confidentiality and integrity for big data processing in the defence sector. As with most technologically-dependent sectors, the defence sector also faces significant challenges with regards to information processing capabilities. This multi-year initiative tackled the pressing need to maintain confidentiality and integrity in data processing, and has the potential to make a fundamental impact on accelerating the adoption of big data/cloud computing technologies in the defence sector. This activity was led by experts from the Republic of Korea and the United States. [ref. G4919].

COMPACT SENSOR SYSTEM FOR UNMANNED AERIAL VEHICLES

This project aimed to develop new compact sensor systems that can identify unknown electromagnetic signals and their incoming direction in the battlefield using Unmanned Aerial Vehicles (UAVs). The low weight and low power consumption sensors can identify key hazards, outposts or targets, and thus allow for the mapping of enemy outposts (manned or unmanned). This MYP was launched in 2014 and was completed in June 2018. This activity brought together scientists and experts from Spain, the Republic of Korea, and Ukraine. [ref. 4809].