

 ALLIED AEDP-5
ENGINEERING (Edition 1)
DOCUMENTATION
PUBLICATION

N
A

TO
 IN

TE
R

N
A

TIO
N

A
L S

TA
FF - D

E
FE

N
C

E
 IN

V
E

S
TM

E
N

T D
IV

.

NATO Standard ISR Library Interface (NSILI)
Implementation Guide

APRIL 2008

AEDP-5

(Edition 1)

iii

RECORD OF CHANGES

Change
Date

Date entered Effective Date By Whom Entered

 AEDP-5

(Edition 1)

iv

TABLE OF CONTENTS

FOREWORD... 1
1 Introduction... 1
2 Objectives of the NSILI AEDP .. 1
3 Philosophy of NSILI AEDP.. 1
4 NSILI AEDP Scope... 2
5 Reference Documents ... 2
5.1 Policy and Planning Documents .. 3
5.2 North Atlantic Treaty Organization Standardization Agreements (STANAGs) and
Allied Engineering Documentation Publications (AEDPs)... 3
5.3 International Standards... 3
5.4 Federal Information Processing Publications... 4
5.5 NGA Specifications and Publications.. 4
5.6 Coalition Documents.. 5
5.7 Freeware and Shareware .. 5
1 The Development Environment ... A-1
1.1 Resources ... A-1
1.2 Use of GIAS and UCOS .. A-1
1.3 Object Request Brokers ... A-2
1.3.1 ORB Description and Experience ... A-2
1.3.2 CORBA Migration Information.. A-4
2 NSILI Server Setup and Login Process – Develop LibraryMgr............................... A-4
2.1 Connecting to a Database... A-4
2.2 Initialize the Server’s CORBA Interface ... A-5
2.3 FTP servers and their configuration... A-8
2.4 Security issues for the Server... A-10
2.5 Download of IORs to NSILI clients... A-11
2.6 Connecting to the NSILI server ... A-13
2.6.1 Connecting the Client.. A-13
2.6.2 Connections over the Internet ... A-13
2.6.3 Login Process Summary ... A-14
3 Query Process – Develop CatalogMgr .. A-14
3.1 CatalogMgr – Client Side... A-15
3.1.1 CatalogMgr Reference .. A-15
3.1.2 Counting Hits with hit_count() ... A-15
3.1.3 HitCountRequest ... A-16
3.1.4 Using a Callback with the HitCountRequest... A-17
3.1.5 Searching Catalog with submit_query().. A-18
3.1.6 SubmitQueryRequest .. A-19
3.1.7 set_number_of_hits() .. A-20
3.1.8 complete_DAG_results() .. A-20
3.1.9 complete_XML_results() .. A-20
3.1.10 Building the BQS Query ... A-21
3.2 CatalogMgr - Server Side... A-22
3.2.1 hit_count() - Server side.. A-22
3.2.2 HitCountRequest ... A-23
3.2.3 submit_query() - Server side... A-23
3.2.4 SubmitQueryRequest .. A-23

 AEDP-5

(Edition 1)

v

3.2.5 Complete_XXX_results() (to be completed) .. A-24
3.2.6 Building the XMLDocument-Result... A-25
3.2.7 Building the DAGList-Result ... A-25
3.3 Converting BQS-Query to Database –Query ... A-25
3.3.1 Database constraints in converting BQS to SQL .. A-25
3.3.2 Converting BQS to SQL Syntax using a parser .. A-26
3.4 RequestManager (tbd).. A-26
3.5 Lessons Learned... A-26
4 Order Process – Develop Product/OrderMgr .. A-27
4.1 Product retrieval ... A-27
4.1.1 URL Direct Access to Products .. A-27
4.1.2 OrderMgr Access to Products with FTP ... A-27
4.2 OrderMgr interface .. A-28
4.2.1 Image Chipping... A-28
4.2.2 Specifying a chip... A-28
4.2.3 Sub-header fields in a chipped image ... A-32
4.2.4 Extended and user defined sub-headers .. A-32
4.2.5 Naming of file(s) in the delivery package... A-33
4.2.6 Reduced sized images ... A-33
4.3 OrderRequest interface... A-34
4.3.1 OrderSize in request_details ... A-34
4.3.2 FTP Server for Order Manager ... A-34
4.4 ProductMgr .. A-34
4.4.1 GetParametersRequest .. A-34
4.4.2 GetRelatedFilesRequest .. A-35
4.5 AccessManager .. A-35
4.6 Order Attributes – get_parameters Request ... A-36
5 Expand Query Process , Load Data Model – Develop DataModelMgr A-36
6 Optional Manager (StandingQueryMgr, StandingOrderMgr, CreationMgr)...... A-36
7 Requests and Callbacks .. A-36
7.1 Requests ... A-36
7.1.1 Deleting a request.. A-37
7.1.2 Request.cancel results ... A-37
7.1.3 SUSPENDED state ... A-37
7.2 Callback ... A-37
7.2.1 SubmitQueryRequest Callback and State Interpretation... A-37
7.2.2 Callbacks are optional ... A-38
7.2.3 Preventing callback caused deadlocks .. A-38
8 Lessons Learned.. A-41
1 History and Future of ISR Data Discovery and Retrieval .. B-1
2 Security .. B-3
2.1 Community of Interest Released Information.. B-4
2.2 Security adaptor layer .. B-5
3 STANAG 4559 and Web Services.. B-6
3.1 Augmenting STANAG 4559 Libraries with Web Services ... B-7
3.2 Web Service Adaptors with NSILI Clients .. B-7
4 Multiple Libraries and Bandwidth Management .. B-7
1 NSILI Server Test Suite ... C-1
1.1 Test Preconditions.. C-1

 AEDP-5

(Edition 1)

vi

2 STANAG Compliance... C-1
1 Purpose and Scope .. D-1
2 STANAG Management Organization ... D-1
2.1 Joint ISR Capability Group.. D-1
2.2 Response to National STANAG Commitment .. D-1
3 Duties of Custodian/Chairman .. D-2
3.1 STANAG 4559 Custodial Support Team (4559 CST)... D-2
3.1.1 STANAG 4559 Representatives ... D-2
3.1.2 National Representative Procedures ... D-2
3.1.3 National Experts.. D-3
3.1.4 Liaison Organizations ... D-3
3.1.5 Non-NATO Nations Participation... D-3
3.2 STANAG 4559 Administrative Support Team (4559 AST).. D-3
3.3 Responsibilities of the NATO Secretary.. D-3
3.4 Special Teams .. D-4
4 Change Management .. D-4
4.1 Submitters of Changes and Amendments .. D-4
4.2 Change Request Format ... D-5
4.3 Class I and Class II Changes.. D-5
4.3.1 Approved Changes .. D-5
4.3.2 Errata Sheets ... D-5
4.3.3 Change Matrix... D-6
4.4 No Decision Situations... D-6
5 Meeting Procedures .. D-6
5.1 Meeting Constraints ... D-6
5.2 Meeting Participation ... D-6
5.3 Meeting Documentation... D-6
APPENDIX 1 OF ANNEX D - CHANGE PROPOSAL DATA...................................... D-9
APPENDIX 2 OF ANNEX D - CHANGE PROPOSAL FORM D-10
1 Sample Code for Clients ..F-1
2 Sample Code for Servers ...F-12
1 Terms and Definitions .. H-1
2 Acronyms and Abbreviations... H-1

 AEDP-5

(Edition 1)

vii

LIST OF TABLES
Annex A
Table A- 1: Applied ORB Reference Table ...A-3
Table A- 2: FTP Server parameter settings and successful results ...A-10
Table A- 3: Exceptions on hit_count() ...A-16
Table A- 4: States of HitCountRequest and their meaning...A-17
Table A- 5: States of SubmitQueryRequest and their meaning..A-19
Table A- 6: Specifying a chip...A-29

LIST OF LISTINGS
Annex A
Listing A-1: Database connection, JDBC example ..A-5
Listing A-2: Generation of the IOR File...A-8
Listing A-3: Example of RFC 959 Java file download to NSILI Client...A-12
Listing A-4: Example of RFC 1738 Java download to NSILI Client...A-12
Listing A-5: Connecting the Client to the Server, example Java..A-13
Listing A-6: CatalogMgr Reference request, example Java ...A-15
Listing A-7: HitCountRequest example Java ...A-15
Listing A-8: HitCountRequest.complete() example Java ...A-16
Listing A-9: hit_count() with callback example, Java..A-18
Listing A-10: submit_query example Java ...A-19
Listing A-11: set_number_of_hits() example Java...A-20
Listing A-12: complete_XML_results() example Java...A-21
Listing A-13: CatalogMgr.hit_count() example, Java ..A-22
Listing A-14: CatalogMgr.submit_query() example, Java ...A-23
Listing A-15: SubmitQueryRequest example, Java..A-24
Listing A-16: SubmitQueryRequest.complete_XXX_result, Java example.......................................A-25
Listing A-17: New Client Callback, Java Example..A-38
Listing A-18: Client Callback with Public Synchronization Voided, Java Example..........................A-39
Listing A-19: Public Register Callback, Java Example..A-39
Listing A-20: Private Callback to Deadlock Server, Java Example ...A-39
Listing A-21: Public Synchronized callback, Java Example ..A-40
Listing A-22: Asynchronous callback, Java example...A-40

Annex F
Figure F-1: Sample Code for Clients.. F-11

LIST OF FIGURES
Annex B
Figure B-1: Overview of Implementations in U.S. National System for Geospatial Intelligence (NSG)

..B-1
Figure B-2: Commitment to the long-term use of NSILI ...B-2
Figure B-3: The National System for Geospatial-Intelligence (NSG) in a Coalition networkB-3
Figure B-4: COI's and STANAG 4559 Libraries ...B-4
Figure B-5: Information Exchange Gateways and STANAG 4559 LibrariesB-5
Figure B-6: Augmenting STANAG 4559 Libraries with Web Services ..B-7

Annex D
Figure D-1: Change Management Process D-7

 AEDP-5

(Edition 1)

viii

FOREWORD

This document provides the North Atlantic Treaty Organization (NATO) Standard ISR
community with technical guidance on developing and testing implementations of STANAG
4559 NATO Standard ISR Library Interface (NSILI). STANAG 4559: NATO Standard ISR
Library Interface (NSILI) is the standard for metadata attribute description and protocol
definition for the discovery and interchange of ISR data among NATO member ISR product
libraries.

The NATO Air Force Armaments Group Joint Capability Group for ISR (NAFAG JCG-ISR)
serves as the advisory group to the NSILI Custodial Support Team (NSILI CST), which
developed this document in accordance with current NATO procedures and guidelines under the
direction and oversight of the NSILI Custodian. Forward all comments, recommendations,
additions, deletions, and other pertinent data that may be of use in improving this document to:

Custodian: STANAG 4559 NSILI
Attn: Laura Moore
National Geospatial-Intelligence Agency
National Center for Geospatial Intelligence Standards
Mail Stop L-66
3838 VOGEL RD
USA – ARNOLD MO 63010-6238
Ph: (314) 676-0290
Fax: (314) 676-3015

AEDP-5

(Edition 1)

1

1 Introduction
This Allied Engineering Documentation Publication provides the technical and management guidance
for implementing the North Atlantic Treaty Organization (NATO) Standardization Agreement 4559:
NSILI as part of the NATO Intelligence, Surveillance and Reconnaissance Interoperability Architecture
(NIIA) for ISR systems. STANAG 4559: NATO Standard ISR Library Interface (NSILI) is the standard
for metadata attribute description and protocol definition for the discovery and interchange of ISR data
among NATO member ISR product libraries.

The aim of the NATO ISR Interoperability Architecture (NIIA) is to promote interoperability for the
exchange of Intelligence, Surveillance and Reconnaissance (ISR) information, including primary and
secondary (post-exploitation) imagery, moving target indicator, digital motion imagery and electronic
intelligence and signals reports among North Atlantic Treaty Organization (NATO) Command Control
Communications, Computers and Intelligence (C4I) Systems.

Four levels of interoperability are defined in NATO interoperability publications. The NATO ISR
Interoperability Architecture provides a foundation and means to collect, store and exchange data and
adheres to accomplishing the levels of interoperability. Those levels of interoperability are:

Degree 1 (Unstructured Data Exchange): Involves the exchange of human-interpretable unstructured
data such as the free text found in operational estimates, analysis and papers.

Degree 2 (Structured Data Exchange): Involves the exchange of human-interpretable structured data
intended for manual and/or automated handling, but requires manual compilation, receipt
and/or message dispatch.

Degree 3 (Seamless Sharing of Data): Involves the automated sharing of data amongst systems
based on a common exchange model.

Degree 4 (Seamless Sharing of Information): An extension of Degree 3 to the universal
interpretation of information through data processing based on co-operating applications.

It should be noted that the objective of the NIIA is to achieve interoperability at Degree 2. With the
implementation of STANAG 4559 and definition of data models and web supported discovery and
retrieval schemas for the data formats defined in the NIIA, higher degrees of interoperability will be
obtained.

2 Objectives of the NSILI AEDP
This Allied Engineering Documentation Publication provides technical information that was recognized
or developed during the design and interoperability testing of STANAG 4559 implementations. The
information found herein was identified as important in designing NSILI implementations that are
interoperable in an Intelligence, Surveillance and Reconnaissance mission and information exchange
network. The AEDP provides guidance on options that may be used in an NSILI implementation and
considerations for future developments in the NSILI STANAG.

3 Philosophy of NSILI AEDP
The STANAG 4559 NSILI Standard specifies a common software interface to be implemented and
exist for all NATO interoperable library systems. The interface provides electronic search and retrieval
capabilities for distributed users to find products from distributed libraries in support of, but not limited
to, rapid mission planning and operation, strategic analysis, and intelligent battlefield preparation. ISR

AEDP-5

(Edition 1)

2

Product Libraries and the NSIL Interface are viewed as a key standards-based technology utilized
within existing Request For Information (RFI) procedures.

Within the NATO ISR Interoperability Architecture, formats for Intelligence, Surveillance and
Reconnaissance data defined by NATO STANAG 4545 Secondary Imagery Format (NSIF) for multiple
still images, text and graphics segments, and the relative orientation of each with respect to the other
segments of the image; NSIF also includes provisions for additional types and volumes of data that
were not anticipated at the time the format standard was created. Because of this continued expansion
of applications of NSIF the NSILI has been seen to provide a discovery and retrieval capability for a
variety of ISR data types. The flexibility of NSILI has been proven in JCG-ISR and other forums with
ISR Ground Moving Target Indicator (STANAG 4607 – GMTI), NATO Primary Imagery Format
(STANAG 7023 NPIF) and Digital Motion Imagery (STANAG 4609) which serve to prove the broader
utility of NSILI. The NSILI Custodial Support Team is working with the development of data models
based on the NATO ISR Capability Group Metadata Harmonization effort to address interoperable
discovery and retrieval methods for these data. Expectations of NSILI application to future ISR data
types serve to further promote this concept. Found within Annex E of STANAG 4559 is the mandatory
Minimum Data Model; this model will be the reference point for other discovery and retrieval data
models as they are defined.

The overall goal is for users of ISR data to have timely access to distributed ISR information as
constraints of operational libraries and security policies permit. The NSILI AEDP supports users and
developers by discussing development experiences of existing implementations and providing
recommendations for implementation design. Adoption within Coalition environments of the NSILI
Standard, this AEDP and test tools is encouraged by the NSILI Custodian Support Team and NATO
ISR Capability Group as a means to establishing and stabilizing the interoperability foundation of
standards-based web-enabled ISR data exchange.

4 NSILI AEDP Scope
This document includes technical guidance and information for developing and testing implementations
of NSILI. The sections of this document are as follows:

Annex A: Implementation Guidance

Annex B: NATO ISR Dissemination Architecture Issues

Annex C: NSILI Test and Certification Criteria

Annex D: NSILI Configuration Management Plan

Annex E: Data Models and Metadata

Annex F: Sample Code and Examples

Annex G: Internet website references

The latest versions of NATO STANAG 4559, the NSILI AEDP and supporting documents are publicly
available from: http://www.nato.int/docu/standard.htm

5 Reference Documents
The following documents are listed as pertinent to the development of this AEDP. Content may be
directly referenced for concepts, capabilities and format structures. As the Library Interface to the
NATO ISR Interoperability Architecture, the STANAG 4559 AEDP-5 will be managed for
compatibility with ISR reference documents listed.

AEDP-5

(Edition 1)

3

5.1 Policy and Planning Documents

NATO AAP-3 Procedures for the Development, Preparation, Production, and the

Updating of NATO Standardization Agreements (STANAGs) and Allied
Publications (APs), Edition 1, February 2004

NATO AEDP-2
Vol 1

Introduction and explanation of the NATO ISR Interoperability
Architecture, Edition 1, September 2005

NATO AEDP-2
Vol 2

NIIA Management, test and certification guidance, Edition 1, September
2005

NATO AEDP-2
Vol 3

NIIA Technical guidance, Edition 1, September 2005

NATO AEDP-2
Vol 4

NIIA Terms and Definitions, Edition 1, September 2005

5.2 North Atlantic Treaty Organization Standardization Agreements
(STANAGs) and Allied Engineering Documentation Publications
(AEDPs)

STANAG 4559 NATO Standard ISR Library Interface (NSILI)

Edition 2, December 2004
STANAG 4545 NATO Secondary Imagery Format (NSIF)

Edition 1, Amendment 1, 14 April 2000
STANAG 4607 NATO Ground Moving Target Indicator Format (GMTI)

Edition 2, August 2007
STANAG 4609 NATO Digital Motion Imagery Format (MI) Edition 2, 2007

STANAG 4633 NATO Signals Intelligence and Electronic Signals Management, 2007
STANAG 7023 NATO Primary Imagery Format, Edition 3, 16 September 2004
AEDP-4 Subject: NATO Secondary Imagery Format (NSIF) Implementation

Guide, Version 0.6, January 2004
AEDP-7 Subject: NATO Ground Moving Target Indicator (GMTI) Format

Implementation Guide , Study Draft

AEDP-8 Subject: NATO Motion Imagery (MI) STANAG 4609 Edition 1
Implementation Guide, Study Draft , April 2005

NSILI Server Test
Suite Specification

Please contact the Custodian laura.a.moore@nga.mil

5.3 International Standards

IEEE Technology of Object-Oriented Languages and Systems, Sept 22-25,
1998

AEDP-5

(Edition 1)

4

ISO 8859 -1 Information technology -- 8-bit single-byte coded graphic character sets
-- Part 1: Latin alphabet No. 1

ISO TC211 Terms
database

http://www.isotc211.org/TC211_Multi-Lingual_Glossary-2007-10-
23_Published.xls

NWG RFC 1738 Network Working Group Request For Comments 1738 - Uniform
Resource Locators (URL), December 1994

NWG RFC 959 Network Working Group Request for Comments 959 File Transfer
Protocol (FTP), October 1985

5.4 Federal Information Processing Publications

FIPS 10-4 Countries, Dependencies, Areas of Special Sovereignty, and Their
Principal Administrative Divisions, April 1995 (Copies of the above
FIPS are available on the web at http://earth-
info.nga.mil/gns/html/fips_files.html.

5.5 NGA Specifications and Publications

D&R IDM Discovery and Retrieval Interface Design Module
http://www.nato.int/docu/stanag/4559/4559_home.htm

GIAS Geospatial and Imagery Access Service Specification
National Imagery and Mapping Agency
Version 3.5.1, 6 August 2001
http://www.nato.int/docu/stanag/4559/4559_home.htm

UCOS USIGS Common Object Specification,
National Imagery and Mapping Agency,
Version 1.5.1a, 5 October 2001
http://www.nato.int/docu/stanag/4559/4559_home.htm

MTR 99W Mitre Technical Report, Geospatial and Imagery Access Services
Specification David P. Lutz, November 1999
http://www.omg.org/docs/gis/99-11-03.doc

STDI-0002 The Compendium of Controlled Extensions (CE) for the National
Imagery Transmission Format (NITF), National Imagery and Mapping
Agency Version 3, 01 August 2007
http://www.gwg.nga.mil/ntb/baseline/documents.html

AEDP-5

(Edition 1)

5

5.6 Coalition Documents

NSILI Server Test
Suite Specification

Multi-sensor Airborne/ground Joint ISR Interoperability Coalition
specification , Version 1.0 (Draft) August 2006

CSD IDD MAJIIC Coalition Shared Data Server Interface Design Document
(DRAFT) (limited distribution)

5.7 Freeware and Shareware

ORB
JacORB
MICORB
ORBacus
Sun-JDK-ORB
VBOrb
VisiBroker

ANNEX A TO

AEDP-5
(Edition 1)

A-1

ANNEX A – IMPLEMENTATION GUIDANCE

1 The Development Environment

1.1 Resources
STANAG 4559, NATO Standard ISR Library Interface, is specified using Interface Definition
Language (IDL) files of GIAS and UCOS (see next section). These IDL files written using the
Object Management Group (OMG) IDL Specification contain the definitions of interfaces, data
types and error conditions in a programming language-independent notation. By using appropriate
IDL parsers, these files can be readily compiled into CORBA software components for various
programming languages including (not exclusive):

• C

• C++

• Java

• Ada95

• Smalltalk

• Visual Basic

For the interoperability tests conducted amongst the NSILI CST, the most common language used
was Java. There is currently only one client implementation based on C++. Another basic client
implementation was realized in C#. As far as it is known, no other languages have been used for
an NSILI implementation. This document does not restrict the developer choice of language.

This document does not restrict the use of any operating system or platform configuration and
several operating systems on different platforms have been tested, including

• Windows

• UNIX (Sun Solaris)

• Linux (Redhat, Debian and S.u.S.E)

• MAC OS (Macintosh).

1.2 Use of GIAS and UCOS
For NSILI a subset of the Geospatial and Imagery Access Services Specification (GIAS) and
USIGS Common Object Specification (UCOS) of National Geospatial-Intelligence Agency
(NGA) is used. These documents and the IDL files needed for implementation are available in
PDF and HTML from the open NATO Standards web site with the 4559 STANAG and this
document. Further information can be found in the references.

GIAS defines the IDL API for the interfaces. NSILI was originally defined by using a subset of the
GIAS operations with their own basic NSILI implementation profile. For the NSG
implementations of GIAS, the actual implementations have to comply with the UIP - which is
basically a profile of all the parameters and valid values, etc., references to the D&R IDM, etc.

ANNEX A TO

AEDP-5
(Edition 1)

A-2

To define implementations of the GIAS, it is critical to also include the application profile that
applies. Similar to OGC services, there is the OGC service spec that is complemented by an
application profile that applies. Both of these pieces are needed to define an implementation and to
properly test and validate the implementations.

The GIAS API for NSG was designed as generic originally to allow for different implementations
which are specified in the appropriate application profile. The result is that currently GIAS and
NSILI are referring to two types of implementations because they have different application
profiles. The GIAS API is much more robust and contains much more functionality than does the
NSILI, which when NSILI was defined from GIAS applied some very deliberate decisions to keep
NSILI as basic as possible.

1.3 Object Request Brokers
For the middleware implementation, various Object Request Brokers (ORBs) are available.
Example freeware and shareware are available from the OMG website -
http://www.omg.org/technology/corba/corbadownloads.htm.

1.3.1 ORB Description and Experience

This document does not intend to restrict use of particular ORB’s, and for purposes of reference
some known ORBs and their properties are listed below. Links to sources of freeware and
shareware are provided in Annex G. Those ORBs that have been adopted or tested for NSILI are
highlighted in bold letters:

1. JacORB, Java, IDL/Java mapping

2. MICO open source, C++, IDL2C++

3. ORBacus commercial, fully CORBA 2.4, C++, Java

4. SUN-JDK-ORB (open source, Java, CORBA 2.3.2), IDL to Java conversion software
idlj.

5. TAO (open source, CORBA 2.2, C++)

6. VBOrb open source, partially CORBA 2.4, Visual Basic, IDL2VB.

7. VisiBroker commercial, CORBA 2.6, C++, Java.

The commercially available ORBs, JacORB, SUN-JDK and VisiBroker, have been tested against
each other. The test process has revealed that versions of certain ORBs were not interoperable.
Tests with VisiBroker, version 4.1 yielded the following:

VisiBroker:

1. Visibroker’s smart agent, osagent, which is an additional, dynamic, distributed directory
service, could not be used for newer S.u.S.E Linux operating system versions. For versions
higher than 8.2, obviously runtime libraries are missing. No further investigations were
made, because the NSILI server could be started without the osagent.

2. VisiBroker ORB can use both CORBA-Policies ”PERSISTENT“ or ”TRANSIENT“.

3. A Virtual Machine (VM) parameter for a server using VisiBroker ORB has to be set to
achieve interoperability with ORBs of other vendors:
Dvbroker.orb.tcIndirection=false

ANNEX A TO

AEDP-5
(Edition 1)

A-3

By default this VM parameter is set to "true". In this case a marshalling error is caused when
receiving the query results.

Tests with the JDK 1.4 ORB, showed features that could cause marshalling errors.

JDK 1.4.1 ORB

1. When the CORBA Policy is set to PERSISTENT in version 1.4.1 of the Java ORB the
CORBA Policy caused errors. This behaviour could not be explained.

2. The IDL-Parser for the JDK-ORB generates the argument UCO.DAGList for the method
complete_DAG_results defined in the interface SubmitQueryRequest, although the
argument defined in the IDL file is GIAS.QueryResults. Both types have the same
structure. Obviously, the IDL parser is ignoring the preceding type definition. This could
be an issue when switching from one implementation using a certain ORB to an
implementation using the JDK ORB.

3. To generate the structure DAG_Results, different attribute values have to be inserted into
any. The purpose of using the any property is to encapsulate data of an arbitrary type. It
was observed that attributes (File Length) of the type UCOS_FILE_SIZE that is a type
definition of double could not be extracted from the corresponding any value. Thus for
internal use in the NSILI CST test community, attributes of type UCOS_FILE_SIZE were
generally set to double for this inserting and extracting process. It appears there is a bug in
the JDK CORBA implementation that disallows the use of type definition
UCOS_FILE_SIZE. It should be kept in mind that for more sophisticated data models
other attribute types might cause equivalent problems.

The ORB validation tests do not intend to restrict the developer to version or platform but are
included for completeness.

Developer IITB IITB

Operating System Windows UNIX Windows Windows Linux Windows +

Linux
Programming
Languages

Java Java Java. C++ Java Java

ORB JDK JDK JAC-ORB VisiBroker JDK VisiBroker+JDK
Implementations Client Client +

Server
Client +
Server.

Client Client +
Server

Client +Server

Developer Selex UK

Operating System Windows UNIX Windows Windows Linux Windows+

Linux
Programming
Languages

C#

ORB IIOP.NET
Implementations Client

Table A- 1: Applied ORB Reference Table

ANNEX A TO

AEDP-5
(Edition 1)

A-4

1.3.2 CORBA Migration Information

Of the variety of ORBs that are available and have been used within an NSILI implementation –
versions of CORBA, GIOP, IIOP, and vendor specific – interoperability between different ORBs
has been tested and performance between NSILI implementations noted through the maturation of

 the NSILI Interfaces. The findings were trustworthy when CORBA 2.3 was applied with
GIOP/IIOP1.2. Later versions of CORBA are expected to perform as well, thus the NSILI CST2
determined that later versions of CORBA are acceptable for NSILI implementations providing that
the later version is compatible with STANAG 4559. ORB migration to use CORBA 2.4 mitigates
most problems recently identified. Text defining this policy for NSILI was incorporated into
Edition 2 of STANAG 4559.

2 NSILI Server Setup and Login Process – Develop
LibraryMgr

As described in STANAG 4559, Annex C, there are two primary activities involved in initiating a
session of interaction with an ISR library:

• Creation of a database connection to an ISR library or a corresponding digital index
(metadata database). This functionality is part of the NSILI server.

• Initialize the servers’s CORBA interface and provide a means for clients to find it for
creating a client/server connection.

Both activities shall be described in the next two subsections.

2.1 Connecting to a Database
In order to view or retrieve data an appropriate API between the NSILI server and the original
database is needed. This API can be designed by using various languages such as Visual Basic,
C++ or Java. To avoid the creation of additional interfaces the API should be part of the NSILI
server and should use the same language. Two well-known database connectivity APIs can be
recommended for an NSILI implementation cased on positive testing experience:

• Microsoft’s Open Database Connectivity (ODBC) and

• Java Database Connectivity (JDBC).

ODBC API offers connectivity to almost all databases on almost all platforms and is a widely used
programming interface for accessing relational databases. It is applicable for C, C++ and Visual
Basic implementations. ODBC cannot be used directly with Java programs, in this case an
additional JAVA Native Interface (JNI) is needed. Alternatively the JDBC API can be used. As
many current NSILI implementations are using Java, the basic steps required to handle JDBC are
described in an example in Listing A-1.

ANNEX A TO

AEDP-5
(Edition 1)

A-5

Step 1: Loading appropriate driver:
Class.ForName(”[Path].Driver)”).newInstance();

Step 2: Establishing a connection:
 Use the following syntax to get connected to the database:

Connection conn = DriverManager.getConnection(String URL,
 String user,
 String password);
URL = jdbc:<subprotocol>://[hostname][:port]/<subname>

Step 3: Creating JDBC statements (these statements are objects that can be executed):

Statement stmt = conn.createStatement();

Step 4: Executing the statement (As a parameter an SQL query has to be passed. This SQL
query is obtained by parsing the corresponding BQS statement):
ResultSet rs = stmt.executeQuery(“<SQL query>”);

Step 5: Retrieving result sets (several methods are available to loop through the result sets):
rs.next(), rs.getInt(), rs.getString() etc.

Step 6: Closing the connection and the statement objects, the close() method is used:
conn.close();
stmt.close();

Listing A-1: Database connection, JDBC example

For Java implementations it is advisable to close any database connections in the finally block
of a try//catch//finally statement. This serves to free database connections at the end of
a connect session.

Several interesting features can be derived from this implementation scheme:

• The JDBC API allows a connection to remote databases in a LAN or even a WAN. By
selecting port numbers and individual IP addresses, firewall configurations can be
adapted.

• Security issues can be taken into account by using user IDs and passwords

2.2 Initialize the Server’s CORBA Interface
As stated in Annex B of STANAG 4559, the networks and communications used to support the
NSIL Interface should be NATO C3 Technical Architecture (NC3TA) compliant. NSILI itself
describes a client/server application based on CORBA. CORBA based programs, implemented in
different programming languages, have been seen to interoperate on a network of distributed
computers using different operating systems. For the communication between client and server the
standard protocol IIOP is used.

ANNEX A TO

AEDP-5
(Edition 1)

A-6

STANAG 4559 requires a server to publish the CORBA reference to the Library object as an IOR
string and make the string accessible via an FTP server. The first necessary step for the NSILI
server application is to generate a CORBA Initial Object Reference (IOR). This IOR with
information about the hardware including IP-address and port number, and the top-level interface
(in the case of NSILI, the Library Interface) is converted to a string, which is written to an ASCII
file. On the NSILI server side an FTP server has to be installed to allow the retrieval of the IOR
file by NSILI clients.

Listing A-2 describes the basic initialization steps that have to be accomplished on the server side
before a client can connect to a server system. Code snippets for a Java and a C++ implementation
are provided:

ANNEX A TO

AEDP-5
(Edition 1)

A-7

Step 1: Initialization of an Object Request Broker with appropriate arguments:
 Java:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 C++:

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

Step 2: Creation of a “root” Portable Object Adapter (POA) as default POA.

The “root” POA is managed by the ORB and is always available to an application
through the ORB initialization method resolve_initial_references:

 Java:
org.omg.CORBA.Object robj =
 orb.resolve_initial_references("RootPOA");
POA rootPOA = org.omg.PortableServer.POAHelper.narrow(robj);

 C++:
CORBA::Object_var robj =

 orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA =
 PortableServer::POA::_narrow(robj);

Step 3: Creation of a “child” POA for the top level Interface “Library” with appropriate

policies by invoking the create_POA factory operation on a parent POA (here root
POA):

 Java:
POA poaLibrary = rootPOA.create_POA("Library_poa",
 rootPOA.the_POAManager(),
 new org.omg.CORBA.Policy[]{…});

 C++:
PortableServer::POAManager_var poa_manager =
 rootPOA->the_POAManager ();
CORBA::PolicyList polices (…);
policies.length(…);
policies0] = …;
…
PortableServer::POA_var poaLibrary =
 rootPOA->create_POA("Library_poa",
 poa_manager.in (),
 policies);

Step 4: Creation and explicit activation of the “Library” servant:
 Java:

LibraryImpl myLibraryImpl = new LibraryImpl(“Library”);
poaLibrary.activate_object_with_id(“Library”.getBytes(),
 myLibraryImpl);

 C++:
LibraryImpl myLibraryImpl;
PortableServer::ObjectId_var Libid =
 PortableServer::string_to_ObjectId ("Library");
poaLibrary->activate_object_with_id(Libid.in (),
 &myLibraryImpl);

Step 5: Creation of an object reference from a servant:
 Java:

org.omg.CORBA.Object objref =
 poaLibrary.servant_to_reference(myLibraryImpl);

ANNEX A TO

AEDP-5
(Edition 1)

A-8

 C++:
CORBA::Object_var objref =
 poaLibrary->servant_to_reference (&myLibraryImpl);

Step 6: Generation of an IOR-file:
 Java:

FileWriter fw =new FileWriter(“[path]/<ior-file-name>”);
fw.write(orb.object_to_string(objref));
fw.close();

 C++:
CORBA::String_var ior =orb->object_to_string (objref);
ofstream of (“[path]/<ior-file-name>”);
of << ior;
of.close ();

Step 7: Activating the NSILI server:
 Java:

rootPOA.the_POAManager().activate();
orb.run();

 C++:
poa_manager->activate();
orb->run();

Listing A-2: Generation of the IOR File

The steps shown above represent one possible way of implementation. Of course there are various
other solutions. For details the reader is referred to the technical literature and some references are
provided in ANNEX G. In particular the definition of policies, the activation of servants
(explicit/implicit) or the way individual POAs are nested with each other are not subject of this
AEDP.

To allow client/server binding in accordance with STANAG 4559, only an Initial Object
Reference (IOR)-file derived from the Library servant has to be provided. This file has to be
accessible and downloadable via FTP. Appropriate FTP servers and other details for this procedure
are described in the next subsection.

2.3 FTP servers and their configuration
A reference specification, the Request for Comments 959 addresses the implementation of FTP
(RFC959). Several FTP servers have been implemented with this specification, many of them are
using additional functionality.

In the course of the interoperability tests of the NSILI CST some FTP servers have been used on
platforms with different operating systems (Windows, Linux, UNIX). Four FTP services have
been investigated more thoroughly:

1. NITE Server, Version 1.86, (http://come.to/niteserversite)

2. WinFtpServer, Version 1.02 (http://www.wftpserver.com)

3. Java FTP-Server, (http://javaboutique.internet.com/FTPServer)

4. VSFTP (Very Secure FTP), (S.u.S.E Linux, Version 8.0 and 8.2)

ANNEX A TO

AEDP-5
(Edition 1)

A-9

These servers were tested and a selection of parameters was found to allow a maximum of IT
security and interoperability. In general all FTP servers were

• operated in passive mode

• enabled for read only mode

• allowed for anonymous ftp

• not enabled to delete or to create files or directories

• limited by time constraints (login time, idle time etc.)

Results of the findings and the parameter settings used successfully are shown in Table A- 2.

Setting / Server NITE Server WinFTPServer Java
FTP-Server

VS-FTP-Server (Linux)

user/password GUI User-Setup:
user setting

password setting

GUI/Edit-User:
user setting

password setting

GUI/User:
user setting

password setting

Administrator:
user and password setting
see Manual Pages Linux

Enable anonymous GUI User-
Setup:
Allow

anonymous
connections

GUI Edit-User:
user: anonymous

no password

GUI/User:
user: anonymous

no password

conf.-file vsftpd.conf::
anonymous_enable=YES

port-number GUI Options:
server-Port 21

GUI/
option/General:
listen-Port: 21

Conf.-file ftpd.conf:
FtpServer.server.

config.port
21

Default 21

Type default: ASCII Default: ASCII Default: ASCII default

Mode default: Stream default: stream default: stream default

Structure default: File default: file default: file default

read/write/delete
permission (files)

GUI User-Setup:
Enable read

GUI/Edit-User:
enable read

GUI User:
disable write

conf.-file vsftpd.conf::
write_enable=NO

Delete/create
permisson
(directories)

not applicable GUI/Edit-User:
deactivate

create, delete

GUI User:
deactivate write

conf.-file vsftpd.conf::
anon_mkdir_write_enable

=NO

transmission rate GUI User-Setup:
unlimited

not applicable GUI User:
max. upload:

no limit
max. download:

no limit

conf.-file vsftpd.conf:

maximum number
of connections

GUI Options:
10

GUI/
Option/General:

10

Conf.-File not applicable

time limits GUI Options:
after secondes:

300

GUI/
Option/General

login timeout: 60
conn. Timeout: 300
no transfer timeout:

300

GUI User:
max. idle time: 300

conf.-file vsftpd.conf:
accept_timeout=60

idle_session_timeout=300
data_connection_timeout

=300

ANNEX A TO

AEDP-5
(Edition 1)

A-10

Output options
(Log-files)

GUI Options:
Define maximum

file length

Gui Option: logging:
???

submenues:
statistics, upload,
download,delete

conf.-file vsftpd.conf:
xferlog_enable=YES

xferlog_file=
/var/log/vsftpd_nsili.log

Range of ports not applicable GUI Option :
activate customer

port range :
4000 4010

not applicable conf.-file vsftpd.conf:
pasv_min_port=4000
pasv_max_port=4010

Table A- 2: FTP Server parameter settings and successful results

Many of these properties are default properties. Some have to be adapted manually. In the table
above the most important settings are shown. Be aware that the servers in the table represent a
very small subset of available FTP servers.

2.4 Security issues for the Server
For security reasons it is reasonable to limit the number of communication ports (range of ports).
Usually firewalls allow only a small number of ports. In a network the number of ports must be
known and the configuration of the FTP servers has to be adapted in a corresponding manner.
Moreover, it is possible to administer firewalls that allow selected external IP-addresses to access
individual sites. In particular, large multinational networks work best with a general network
administration that is accountable for all constraints and defines port IP-address numbers for all
the individual participants. This means that FTP servers should permit a flexible configuration to
comply with all constraints.

As noted before, for security reasons the FTP servers should be enabled only in read mode to
allow download of IOR files from the server side. Product files can be uploaded to the client side
via FTP for the ordering process. In this case the write mode has to be enabled for the FTP server
on the client side. The same FTP server may be used for both a client and a server. By defining
different FTP-users for the upload and download process, specifically read only mode for the
anonymous user, and read and write mode for user xyz, maximum security can be guaranteed (see
Figure A-1). For the user “anonymous” no password is needed allowing only read access to the
files of the directory C:\ftp\etc and its subdirectories. The user “nsili” needs a password and has all
available access rights to the home directory C:\ftp\etc and its subdirectories.

ANNEX A TO

AEDP-5
(Edition 1)

A-11

Figure A-1: Example configuration for anonymous read and/or write access on a WinFtp Server

Investigations and the interoperability tests have shown that detailed and harmonized
administration for FTP servers is needed to have access to the distributed NSILI servers. It is
highly recommended to use FTP servers that can be configured in a very flexible way. By using
appropriate URLs, NSILI clients shall connect to these FTP servers. STANAG 4559 specifies
mandatory support of both “anonymous” FTP and access with username and password. The URLs
that shall be applied shall have the following syntax:

ftp://anonymous:<e-mail-address>@libraryHost/<path>/IOR_filename

ftp://user:password@libraryHost/<path>/IOR_filename

These URLs must be made available to the NSILI clients. Depending on the security level, this can
be done by corresponding means of communication, i.e. email, phone, fax, etc.

2.5 Download of IORs to NSILI clients
In the last subsections the preparations to establish the client/server connection have been
described from the server side. This subsection provides a more detailed view on the client side.
The first steps of connectivity on the client side are:

• process the server generated URL

• access the corresponding FTP server and

• download the IOR file.

There are many FTP client libraries available to implement these processes in a NSILI client. In
general they are specified by RFC 959.

Two proposed Java approaches (JDK of SUN) are presented in Listing A-3: Example of RFC 959
Java file download to NSILI Client and Listing A-4: Example of RFC 1738 Java download to
NSILI Client respectively. The implementation treating RFC 959 as the Java class
sun.net.ftp.FTPClient is currently undocumented and unsupported. One well
documented and maintained Java implementation for the RFC 959 can be found within the Apache
Commons Net project. A code snippet for the implementation of a file download via FTP is shown
in Listing A-3:

ANNEX A TO

AEDP-5
(Edition 1)

A-12

URL url= new URL(url_string);
String[] userInfo = url.getUserInfo().split(":");
String ftpuser = userInfo[0];
String ftpPW = userInfo[1];
org.apache.commons.net.ftp.FtpClient ftpClient =
 new
org.apache.commons.net.ftp.FtpClient();
ftpClient.connect(url.getHost());
ftpClient.login(ftpuser, ftpPW);
ftpClient.setFileType(FTP.ASCII_FILE_TYPE);
String localPath = "localFilePath";
FileOutputStream fos = new FileOutputStream(localPath, false);
ftpClient.retrieveFile(url.getFile(), fos);
ftpClient.logout();
ftpClient.disconnect();

Listing A-3: Example of RFC 959 Java file download to NSILI Client

Please note, that the approach in the given example only works if the password in the URL doesn’t
contain any special characters. E.g.: while ‘a/b’ is a legitimate FTP password, the code in the
snippet will fail, because the resulting URL is not valid.

It can be seen that several steps have to be accomplished before the file information is available. In
particular the URL string has to be cast in several strings (host, user, password, file), which are
needed to get the IOR information.

The implementation of RFC1738 obtains this information in a direct and thus shorter and arguably
more reasonable way. The source code is in the public domain and available at
http://java.sun.com/j2se/. The main advantage to the implementation of RFC1738 is that it can be
used for other protocols, including HTML. A sample implementation is given in Listing A-4.

URL url = new URL(urlStr);
BufferedReader in = new BufferedReader(
 new InputStreamReader(url.openStream(), "ISO-8859-1"));
String iorString = in.readLine();
in.close();

Listing A-4: Example of RFC 1738 Java download to NSILI Client

Another general problem is that FTP URLs require that the control connection is closed after every
operation, which is not the case for the first approach. Closing the control connection after every
operation is not efficient for transferring many small files. For the FTP transfer of product files in
the query or order process, this approach is potentially resource consumptive and problematic.
Extremely restrictive FTP servers may detect such communication overhead as a network attack or
abuse and deny further service.

This investigation considered only FTP clients based on Java and discussed problems encountered
and solutions for those problems. For other programming languages like C++ or Visual Basic
comparable FTP client libraries are available.

FTP is a well established mechanism to transmit and to retrieve files. However, some adaptation of
the configuration is generally necessary. During NSILI CST interoperability tests, the following

ANNEX A TO

AEDP-5
(Edition 1)

A-13

features were identified as areas for further investigation in future NSILI implementations:

• time-dependency for down- and upload of files using different servers and clients

• use of proxy servers behind firewalls

• behaviour in VPNs (Virtual Private Networks).

2.6 Connecting to the NSILI server
In this section the client/server connection is accomplished.

2.6.1 Connecting the Client

Three basic steps are performed in the client application for a successful server connection.
Examples of the steps are given below. On completion of these steps the user should have a
reference to the engaged library which denotes an established connection.

Step 1: The ORB has to be initialized (with additional arguments):
 Java:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
 C++:

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

Step 2: The IOR string has to be converted to a CORBA object:
 Java:

org.omg.CORBA.Object objRef = orb.string_to_object(ior_string);
 C++:

CORBA::Object_var objRef = orb->string_to_object(ior_string);

Step 3: The CORBA object is narrowed:
 Java:

Library myLibrary = GIAS.LibraryHelper.narrow(objRef);
 C++:

Library::Library_var myLibrary = Library::_narrow(objRef.in());

Listing A-5: Connecting the Client to the Server, example Java

2.6.2 Connections over the Internet

To initiate a CORBA connection to a firewall protected server in an Internet environment, the
client has to use defined port numbers and the firewall IP-address. This firewall IP address has to
be mapped to an internally known, private address of the server on the server side using a Network
Address Translator (NAT). Network Address Translators allow a single device, such as a firewall
or a router, to act as an agent between the Internet and a local or private network. This means for a
client that only a single, unique IP address is required to access even several different servers in a
LAN. The router (firewall) then maps this IP-address to the predefined server. The specification
for NATs can be found in the RFC 1631.

There are two essential problems when trying to use the Internet Inter-ORB Protocol (IIOP) across
today’s firewalls:

• Location-transparency and the dynamic allocation of addresses as performed by CORBA

ANNEX A TO

AEDP-5
(Edition 1)

A-14

middleware make it difficult to know in advance the host and port addresses used for
transactions.

• Addressing information contained in an object reference is invalidated when crossing an
NAT router.

The first problem can be avoided by using fixed IP addresses and communication ports. As already
described for FTP all this information has to be known in advance to get the right firewall
configuration. Using appropriate IOR files that contain both the “official” IP address and the
internal “private” IP address can solve the second problem.

Other Comments:

The Java ORB has special settings to address some of the issues:

For the orbd program the option: "-port NNN" fixes the port used for communicating with the
nameserver to a given port.

For the orbd program the option: "-JDcom.sun.CORBA.ORBServerHost =
remotely_known_host" publishes the given remote host (or IP address, as known outside the
firewall), instead of an internal IP address of the server.

A Java CORBA program can be started with the option: "-
Dcom.sun.CORBA.POA.ORBPersistentServerPort = NNN" to fix the port used for
communication between client and a server to a given port.

A Java CORBA program can be started with the option: "-Dcom.sun.CORBA.ORBServerHost
= remotely_known_host" to publish the remote host in the IOR string and other CORBA
references.

2.6.3 Login Process Summary

Many interoperability tests and experiments have been performed between the nations’
implementations within the last years. A successful login process has proven to be the key for
interoperability. Usually minor changes for the participating interfaces were necessary when
appropriate configurations and codes were used to establish the FTP and CORBA connections.
This is true for connections in Local Area Networks and Wide Area Networks connecting over the
Internet.

3 Query Process – Develop CatalogMgr
This part of the AEDP-5 describes implementation details for the CatalogrMgr. For a detailed
description of the functionality refer to STANAG 4559 and GIAS 351. The description provided
in this Annex is divided for the Client side and the Server side. The description templates are
written in Java but should be applicable easily to any implementation language. Pseudo code is
written as Java Comment.

ANNEX A TO

AEDP-5
(Edition 1)

A-15

3.1 CatalogMgr – Client Side
The CatalogrMgr holds the functionality of querying the Catalog of the ISR-Library. For this
purpose, it has 2 methods:

• hit_count returns the amount of hits for the specified query via HitCountRequest. (see
section 3.1.2 Counting Hits with hit_count())

• submit_query returns the result of the specified query via SubmitQueryRequest. (see
section 3.1.5 Searching Catalog with submit_query())

Both methods use the GIAS.Query Struct, see GIAS 351

It should be understood, that a subsequent call of hit_count() and submit_query() could
theoretically have different results, if the database is modified between calls.

3.1.1 CatalogMgr Reference

As basis for further operation the Client has to get a CatalogMgr Reference. During the login-
process the Client requested and received a Library-Reference, which will enable the request of all
managers associated with the Library. The code sample below shows how a CatalogMgr
Reference request is achieved in Java.

Client.java: getting CatalogMgr Reference

LibraryManager mgr = Library.getManager(“CatalogMgr”);
CatalogMgr catalogManager = CatalogMgrHelper.narrow(mgr);

Listing A-6: CatalogMgr Reference request, example Java

3.1.2 Counting Hits with hit_count()

The Client can determine the number of results or “hits” that would be returned from the Query.
 Listing A-7 shows an example for the invocation of this method.

Client.java: hit_count() (synchronous call)

GIAS.HitCountRequest hitRequest=null;
GIAS.Query aQuery= ...;
try {
 hitRequest = CatalogManager.hit_count(aQuery, new NameValue[0]);
...
} // handle Exceptions

Listing A-7: HitCountRequest example Java

ANNEX A TO

AEDP-5
(Edition 1)

A-16

A successful invocation of this operation returns a reference to a HitCountRequest object (see
3.1.3). If invocation fails one of the exceptions enumerated in Table A- 3 is raised.

Exception Meaning
UnknownViewName ViewName in aQuery is unknown.
BadQuery aQuery is syntactically invalid
BadQueryAttribute aQuery contains an attribute unknown to the CatalogMgr

Table A- 3: Exceptions on hit_count()

Further Experiences on these exceptions:

• UnknownViewName: The ViewName is mandatory. It can be identified from the
CatalogMgr for instance as CatalogMgr.get_view_names() or must at least be
hard coded as “NSIL_CORE”.

• BadQuery: This is mostly an error generated by the server’s BQS-Parser, if the BQS-
Query is incorrect.

• BadQueryAttribute: Mostly generated if ViewName and Attributename do not
match. See GIAS and STANAG 4559 “Annex F Boolean Query Syntax” for further
discussion of the Query struct.

3.1.3 HitCountRequest

The HitCountRequest is returned by a successful invocation of the hit_count operation of
the CatalogMgr. It provides the operation complete() to retrieve the count of the results of
the submitted query. Listing A-8 provides a Java example for the
HitCountRequest.complete() operation.

Client.java: HitCountRequest.complete()

org.omg.CORBA.IntHolder hitCount = new org.omg.CORBA.IntHolder();
UCO.State hitState=null;
try {
 hitState = hitRequest.complete(hitCount);
 ...
} // handle Exceptions
return hitCount.value;

Listing A-8: HitCountRequest.complete() example Java

This operation allows a client to complete processing of the HitCountRequest. The call
blocks until the requested operation reaches an end state. A successful invocation of this operation
(State “COMPLETED”) returns a value that indicates the total number of results (“hits”) that
would be returned if the query was executed.

ANNEX A TO

AEDP-5
(Edition 1)

A-17

Table A- 4 shows the possible states that the Client can see, and the response of the
CatalogMgr, or the descriptive meaning of the State.

State Description
PENDING Initial state
IN_PROGRESS Query started
COMPLETED Result is available
ABORTED Request aborted

Result is not valid
CANCELLED Request cancelled

Result is not valid

Table A- 4: States of HitCountRequest and their meaning

Further operations concerning the calls of the RequestManager will be provided in future
versions of this document.

3.1.4 Using a Callback with the HitCountRequest

Using the Callback option can be denied by the server (register_callback will fail).
Further descriptions for the use of the callback and what has to be taken into account can be found
in Section 7 of this Annex. Callbacks can be useful on long-time operations and asynchronous
events.

Using the Callback with a hitcount provides the chance to track incoming data alternatively
with other processing. Listing A-9 provides example code.

ANNEX A TO

AEDP-5
(Edition 1)

A-18

Client.java: hit_count() (using callback)

org.omg.CORBA.IntHolder hitCount = new org.omg.CORBA.IntHolder();
GIAS.HitCountRequest hitRequest = null;
UCO.State hitState = null;
GIAS.Query aQuery = ...;

try {
 hitRequest = CatalogManager.hit_count(aQuery, new NameValue[0]);
 ...
} // catch Exceptions

Callback cb = getCallbackObject(hitRequest);
String callBackID = hitRequest.register_callback(cb);

if (callBackId != null) { // Server accepts Callbacks

 waitForNotify(); // do something else ...
 hitRequest.freeCallback(callBackId);
}

try {
 hitState = hitRequest.complete(hitCount);
 ...
} // catch Exceptions

return hitCount.value;

Listing A-9: hit_count() with callback example, Java

3.1.5 Searching Catalog with submit_query()

This operation allows a client to submit a query to the CatalogMgr. This operation needs as
input parameters:

• aQuery: The GIAS.Query

• resultList: A list telling the server which metadata to provide

• sortAttributeList: A list for sorting the results

• propertyList: Defaults to “WGS84”

The type of resultList is UCO.NameList. The Client tells the server, which Metadata model
has to be returned. The list is a subset of the metadata of the selected view in the Query. The Client
can get the complete list with DataModelMgr.get_attributes(). If the list is empty, only the
UID.Product and no metadata attributes will be returned.

The sortAttributeList tells the server, how and by which attributes the results have to be
sorted. This list may only consist of sortable attributes. If the list is empty, then the order is server
implementation specific.

A successful invocation of this operation will return a reference to a SubmitQueryRequest
object described below. If invocation fails, standard exceptions are raised, as described in Table A-
3: Exceptions on hit_count().

ANNEX A TO

AEDP-5
(Edition 1)

A-19

Client.java: submit_query()

String[] results = null;
GIAS.SubmitQueryRequest subRequest = null;
GIAS.Query aQuery = ...;

try {
 subRequest = CatalogManager.submit_query(aQuery,
 resultList,
 sortAttributeList,
 propertyList);
 ...
} // catch Exceptions

Listing A-10: submit_query example Java

3.1.6 SubmitQueryRequest

The SubmitQueryRequest is returned by a successful invocation of the submit_query()
operation of the CatalogMgr. It provides operations to retrieve the results of the submitted
query in two forms: as a DAG (Direct Acyclic Graph) or as a XML-document. This interface
defines the following operations:

• set_number_of_hits()

• complete_DAG_results()

• complete_XML_results()

The operation complete_StringDAG_results() is not supported and raises a
CORBA.NO_IMPLEMENT Exception.

Like the complete() method of the HitCountRequest the complete_XXX_results() methods
of the SubmitQueryRequest return a State. The meanings of the different states for the
SubmitQueryRequest are shown in Table A-5.

State Description
PENDING Initial state

IN_PROGRESS Searching started
RESULTS_AVAILABLE First Results available, results are not completed
COMPLETED Server has all results completed
ABORTED Request aborted

Results are not valid
CANCELLED Request cancelled

Results are not valid

Table A- 5: States of SubmitQueryRequest and their meaning

ANNEX A TO

AEDP-5
(Edition 1)

A-20

3.1.7 set_number_of_hits()

The operation set_number_of_hits() allows a client to delimit the number of results or hits
that are returned by the invocation of one of the “complete-operations”. The number of hits should
be geared to the required format for the results. The value entered is valid for the current
SubmitQueryRequest.

Client.java: set_number_of_hits()

Unsigned long hits = ...;
try {
 subRequest.set_number_of_hits (hits);
 ...
} // catch Exceptions

Listing A-11: set_number_of_hits() example Java

3.1.8 complete_DAG_results()

The Client completes processing of the SubmitQueryRequest with this operation. A successful
invocation returns a UCO.DAGList structure containing results from the query. The number of
results contained in this list depends on the history of the SubmitQueryRequest and the server
implementation.

• If the client has invoked set_number_of_hits(), the number of results will be less
than or equal to this limit.

• Otherwise all results or a server-internal limit of results will be returned.

As long as the number of results equals the number of hits set with set_number_of_hits(), the
call has to be repeated until the return list contains less than the set_number_of_hits() value
or is empty. If the operation is cancelled or aborted, the results in the list are no longer valid.

3.1.9 complete_XML_results()

The Client completes processing of the SubmitQueryRequest with this operation. A successful
invocation returns a UCO.XMLDocument structure containing results from the query. The number
of results contained in this list is dependent on the history of the SubmitQueryRequest and the
server implementation.

• If the client has invoked set_number_of_hits(), the number of results will be less
than or equal to this limit.

• Otherwise all results or a server-internal limit of results will be returned.

As long as the number of results is equal to the number of hits set with
set_number_of_hits, the call has to be repeated until the return list contains less hits, or is
empty. If the operation is cancelled or aborted, the results in the list are no longer valid. As there
is no XML Schema defined at the release of this AEDP-5, the resulting XML-Document is Library
specific.

ANNEX A TO

AEDP-5
(Edition 1)

A-21

Client.java: complete_XML_results (synchronous)

UCO.State subState = null;
GIAS.StringHolder xresults = new StringHolder();

try {
 subState = subRequest.complete_XML_results(xresults);
 int numberOfResults = ...;
 if ((numberOfResults < numberOfHits)||(numberOfResults == 0)) {
 // all results retrieved
 } else { // further results available
 ...
 }
} // catch Exceptions

Listing A-12: complete_XML_results() example Java

3.1.10 Building the BQS Query

The following examples are provided as guidance. An expansion on the discussion of the BQS
query examples given in STANAG 4559 represents the experiences of NSILI developers and
users. The following examples of the BQS query use the NSILI CORE datamodel.

Query for date and time:

"FDT > '2007/10/09 12:00:0.0'" looks for all products created after the specified date.

Query for date and time, attribute name qualified with entity name:

"NSIL Interface Image Product.FDT > '2007/10/09 12:00:0.0'" looks for all
products created after the specified date.

Using wildcards:

"(ICOM LIKE '%bridge%' or ICOM LIKE '%Munich%')" looks for products with an
ICOM-comment, which contains the words “bridge“ or “Munich”. The round bracket closes the
logical “or”, it could be omitted in this case.

Using text comparison:

"ICAT = 'SAR' or ICAT = 'VIS'" looks for products whose ICAT matches exactly 'VIS' or
'SAR'.

Geospatial query (1)

"IGEOLO inside RECTANGLE (60.0, 5.0, 5.0, 60.0)" looks for products, whose
IGEOLO is completely inside the specified rectangle (upper-left , lower-right). Coordinates are in
degrees (latitude, longitude).

Geospatial query (2)
"IGEOLO intersect POLYGON (55.0, 5.0, 55.0, 9.0, 52.0, 9.0, 52.0, 5.0)"
looks for products which are completely or partially inside the specified polygon. The arrangement
of the coordinates is counter-clockwise, the polygon must not be closed. Coordinates are in
degrees (latitude, longitude).

ANNEX A TO

AEDP-5
(Edition 1)

A-22

Geospatial query (3)

"IGEOLO within 20000 meters of POINT (48.0 , 11.5)" looks for products, whose
IGEOLO is completely inside a circle of 20 km around the specified point. Coordinates are in
degrees (latitude, longitude).

3.2 CatalogMgr - Server Side
The CatalogMgr implements the functionality of querying the Catalog of the ISR-Library on
the Server Side. For this purpose, it has 2 methods:

• hit_count() returns the amount of hits for the specified query via
HitCountRequest. (3.2.1)

• submit_query() returns the result of the specified query via SubmitQueryRequest.
(3.2.4)

There are several common topics:

• Parsing the BQS-Query

• Converting BQS-Query to a database query (3.3)

• Connecting to RequestManager

When creating the CatalogMgr server implementation all users are able to share the same
CatalogMgr instance because in the STANAG 4559 text the choice was made to ignore the
access criteria. If a server is designed to also allow access criteria along with “anonymous” usage
that is required by STANAG 4559, the server may need a CatalogMgr instance per user in order
to hold the access criteria.

The code provided in the following examples is intended to illustrate logic that has been applied to
the methods.

3.2.1 hit_count() - Server side

On server side the hit-count() invocation has to create a HitCountRequest, add it to the
RequestManager and return it to the caller. HitCountRequestImpl is the implementation
of the interface.

Server.java: CatalogMgr.hit_count()

try {
 HitCountRequestImpl sv = new HitCountRequestImpl(catalogMgr,
 aQuery);
 org.omg.CORBA.Object ref = orb.activate_object(sv);
 HitCountRequest request = HitCountRequestHelper.narrow(ref);
 requestManager.addRequest(sv);
 ...
 return request; // return HitCountRequest
} // catch Exceptions

Listing A-13: CatalogMgr.hit_count() example, Java

ANNEX A TO

AEDP-5
(Edition 1)

A-23

3.2.2 HitCountRequest

The HitCountRequest analyzes the Query with the BQSParser, converts the Query to the
Database Query and executes the Query (Section 3.3). If analysis or execution fails, appropriate
exceptions have to be raised.

For the implementation of the HitCountRequest.complete() method, the server has to
check, whether the execution of the Query has finished. This means the HitCountRequest has
reached an “end state” (COMPLETED, ABORTED, CANCELED). The server will wait for an “end
state” to be reached. If the Query was successful (State.COMPLETED), the result is read, Result
and State are returned. Alternatively if it is allowed to postpone the DBQuery until complete()
is called, considering that it can be quite fast, the state would immediately be set to
State.COMPLETED. If the Query reaches State.ABORTED or State.CANCELED the query
results will be invalid.

3.2.3 submit_query() - Server side

On the server side the submit_query() invocation has to create a SubmitQueryRequest,
add it to the RequestManager and return it to the caller. SubmitQueryRequestImpl is the
implementation of the interface.

Server.java: CatalogMgr.submit_query()

GIAS.Query aQuery= ...;
try {
 SubmitQueryRequestImpl sv = new SubmitQueryRequestImpl(...);
 org.omg.CORBA.Object ref = orb.activate_object(sv);
 SubmitQueryRequest request = SubmitQueryRequestHelper.narrow(ref);
 requestManager.addRequest(sv);
 ...
 return request; // return SubmitQueryRequest
} // catch Exceptions

Listing A-14: CatalogMgr.submit_query() example, Java

3.2.4 SubmitQueryRequest

The SubmitQueryRequest analyzes the Query with the BQSParser, converts it to the
Database Query and executes the Query (Section 3.3). If analysis or execution fails, appropriate
exceptions have to be raised.

The execution of the query by the SubmitQueryRequest can be done at several opportunities.
If the query is expected to take a short amount of time it may be executed even before the
CatalogMgr returns the SubmitQueryRequest to the client. The state will be reset to
COMPLETED as an immediate response to client receipt of the request reference.

The incoming results of the query are stored in a unique structure, such as an
UCO.NameValueList or a HashMap. If using callbacks, SubmitQueryRequest has to
notify the client when the number of results exceeds the set_number_of_hits() or as
execution is completed.

ANNEX A TO

AEDP-5
(Edition 1)

A-24

Server.java: SubmitQueryRequest.()

BQSParser bqp = new BQSParser(aQuery);

// analyze BQS-Query
attributeDefs = bqp.analyze();

// Create Database-Query
DatabaseQuery dq = new DatabaseQuery (attributeDefs);

// execute query
dq.execute();

if (dq.is_non_blocking) {
 while dq.busy() { // Query not completed
 state = State.RESULTS_AVAILABLE;
 if (use_callback && (nr_of_results > nr_of_hits)) {
 send_notify();
 }
 }
} else {
 state = State.COMPLETED;
 if (use_callback) {
 send_notify();
 }
}

Listing A-15: SubmitQueryRequest example, Java

3.2.5 Complete_XXX_results() (to be completed)

The server has to wait, until one of the following conditions is fulfilled:

• SubmitQueryRequest has reached an end state (COMPLETED, ABORTED, CANCELED).

• SubmitQueryRequest is in state RESULTS_AVAILABLE and the
number_of_results is greater than or equal to number_of_hits.

If state is COMPLETED, the number of returned results is counted as follows:

• If number_of_hits is set, the rest of the results will be returned

• If number_of_hits is not set, but the server has an internal limit, the limit or the rest of
the results will be returned.

• Otherwise all remaining results will be returned.

If state is RESULTS_AVAILABLE, number_of_hits or the rest of the results will be returned.

ANNEX A TO

AEDP-5
(Edition 1)

A-25

Server.java: SubmitQueryRequest.complete_XXX_result()

while (true) {
 if (subState.isAnEndState())
 break;

 if ((subState == State.RESULTS_AVAILABLE) && (no_res >= no_hits))
 break;

 wait();
}

Results[] results = null;
if (subState.isAnEndState() && subState == State.COMPLETED) {
 if (limit.isSet())
 if (limit < no_res)
 results = getResults (limit);
 else
 results = getResults (no_res);
 else
 results = getResults (no_res);
} else {
 results = getResults (limit);
}

return subState;

Listing A-16: SubmitQueryRequest.complete_XXX_result, Java example

3.2.6 Building the XMLDocument-Result

An XML-Document must have a structure to be proved. This structure is obtained by a .dtd-File or
a XML-Schema. A Schema will be part of the 4559 STANAG once it is defined.

3.2.7 Building the DAGList-Result

The DAG list construction and specification is defined in the GIAS document which is provided
with the promulgated STANAG 4559 on the NATO web site at www.nato.int/docu/standard.htm.
Refer specifically to Section 5 of Appendix 1 to Annex D of STANAG 4559. STANAG 4559
implementations are trying to define the best way to structure the DAG for complex metadata
relationships and later versions of this document will address the best recommendations.

3.3 Converting BQS-Query to Database –Query
Establishing a syntactically correct query is necessary for the client and server to correspond on
data availability. As different databases may have variations in their structure, or simply hold
different types of data the BQS Query must be converted for the database. The BQS query syntax
is presented in Annex F of the 4559 STANAG.

3.3.1 Database constraints in converting BQS to SQL

Database specific details like database ID and table names will need to be appended into the SQL

ANNEX A TO

AEDP-5
(Edition 1)

A-26

string. It is recommended that these implementation specific details are loaded at server startup via
a configuration file to allow the layer of code communicating with the database to be as generic as
possible supporting portability between database implementations. For instance, mapping
geospatial operators to SQL is highly database specific and implementations exist that use Oracle
DB with Spatial module.

3.3.2 Converting BQS to SQL Syntax using a parser

When translating the BQS string to SQL, syntax strings that might not be suitable for processing
by a database implementation need to be filtered. For example, SQL characters such as " (" and ")"
and SQL keywords such as "INSERT" or "VALUES" should be replaced, escaped or otherwise
handled.

Implementers have found that though it may be possible to convert BQS to SQL syntax with only
string replacements, experience has shown that it is easier to use a parser generator to create a
parser for BQS, and use the parse-tree to build the SQL.

STANAG 4559 contains the BNF notation for the BQS in Annex F of this AEDP. Writing the
input for a parser generator based on this BNF notation is relatively straightforward.

There are a few problems related to parsing the BQS using a generated parser:

• Entity names can contain spaces, e.g. the “NSIL Interface IMAGE PRODUCT” entity
used in the NSIL_CORE view.

Problem: a generated parser will have difficulties to differentiate between spaces in an
entity name and spaces to separate parsing terms (e.g. name, operator, value).

Solution: some implementations have chosen to replace the entity names with spaces by
other entity names without spaces before parsing the BQS query.

• Valid operators and values are dependent on the type of attribute. A straightforward parser
will not be able to validate the query completely for correctness.

Solution: After creating the parse tree with the parser, the parse tree can be checked for
incompatible attribute-operator and attribute-value pairs.

3.4 RequestManager (tbd)

3.5 Lessons Learned
M.D50 This section is intended to provide answers to questions like:
do I need a RequestManager per manager
Separate sections for CatalogMgr and OrderMgr will also be prepared.

This section will also potentially document requests from different users:
It is possible (in a management application) to list all requests in a request manager, and also do
things with them (e.g. cancel). The implementation of the requests (in general) thus needs to take
such a case into account.

ANNEX A TO

AEDP-5
(Edition 1)

A-27

4 Order Process – Develop Product/OrderMgr

4.1 Product retrieval
After querying on product metadata there are several possibilities to retrieve the product and its
related files.

• Order product on-line using the OrderMgr, delivery by FTP or e-mail

• Order product with alteration using the OrderMgr (e.g. only part of an image, or chip)

• Order off-line products like paper maps using the OrderMgr.

• Request related files to be delivered by FTP using the ProductMgr.

• Direct retrieval by a URL given in a metadata attribute of the product or related files.

All libraries must support product delivery via the OrderMgr. Support for alterations, and off-
line products will depend on the library implementation.

Libraries supporting related files must support delivery using the ProductMgr.

Direct retrieval by a URL will depend on the library implementation. Retrieving a product or
related file via a URL is easy to implement in a client, so library implementations are encouraged
to support this option.

4.1.1 URL Direct Access to Products

Retrieving a product using a URL is by far the easiest retrieval method to implement in a client.
The NSIL_CORE view, for example, contains the DAID attribute. It will contain a URL. In most
modern programming languages retrieving a URL is very easy.

Several limitations exist with using this URL linkage. No conversion, packaging, or chipping can
be specified in this notation. Also, multiple products cannot be retrieved to a machine other than
the client.

A URL allows many different protocols to be used. In general libraries should use only “http”,
“https” and “ftp” protocols for file-based direct access. As a client implementer note that other
protocols could be used. For example a video stream could be identified by an “rtp” protocol.
Another example could be a JPIP protocol for JPEG2000 images.

A URL allows specification of a communication port number. This provides flexibility on the
server side, e.g. to have two libraries (test and production) running on the same system, but
providing products on a different port. Network and firewall must be considered because they
must allow routing of network packets from the required port.

4.1.2 OrderMgr Access to Products with FTP

Ordering using the OrderMgr and related file retrieval via the ProductMgr will in contrast use
the FTP protocol to send the files. The OrderMgr also allows sending files using e-mail. The
advantage of the OrderMgr is its many packaging and conversion options. For example, products
can be very large images (hundreds of megabytes). The OrderMgr allows selecting only a subset

ANNEX A TO

AEDP-5
(Edition 1)

A-28

or chip of the image, saving big on bandwidth (but requiring more processing power on the
server).

The OrderMgr and ProductMgr send files to an FTP server (push), while the direct access
URL allows a client to pull files. The OrderMgr and ProductMgr require the client to have
access to an FTP server to where they can send the files. See also section 4.3.2 on the FTP server
for Order Manager.

4.2 OrderMgr interface
The OrderMgr provides many options to allow a flexible ordering process:

• Alterations: chipping, scaling, changing image compression, changing image mode.

• Different delivery protocols: FTP, e-mail, physical

• Different packaging options: separate files or packaged in a ZIP or TAR file, with or
without file compression.

Appendix 1 of Annex D of STANAG4559 is mostly dedicated to the ordering options and possible
values to use in ordering fields. The following sections detail implementation issues for the
OrderMgr not given in the STANAG.

4.2.1 Image Chipping

Image chipping is the process of creating a subset or chip of an image. Libraries can contain very
large images (hundreds of megabytes). An operator may be interested only in a particular area.
Instead of retrieving the whole image to the client, the OrderMgr can chip the area of interest
from the large image and send only that smaller image to the client.

There are several advantages: The client may better handle smaller image files, and more chips can
be accommodated; smaller imagery/ISR data files will move more rapidly through bandwidth
constrained networks

4.2.2 Specifying a chip

The main data structure to specify a chip is GIAS.ImageSpec. Table D-1-6 in Annex D of
STANAG 4559 details the possible field values. A chip is specified using the sub_section and
geo_region_type fields. Refer to GIAS 351 for details of the GeoRegionType type. Table A- 6
contains a description of the chipping options. For products with multiple image segments, the
imageid field allows selection of the single segment to chip; this is discussed further in subsection
4.2.2.2.

geo_region_type sub_section Comments
ALL Irrelevant No chipping, use full image (all

segments)
LAT_LON x = longitude, y = latitude in

decimal degrees
Chip using geographic coordinates.
Will only work for images with
geo-location information. It is a
rectangle with top and bottom
parallel to the image top and

ANNEX A TO

AEDP-5
(Edition 1)

A-29

bottom.
LINE_SAMPLE_FULL Coordinates in the coordinate

system of the full resolution
image (the product).

Don’t use NSIF CCS, but single
image coordinates. Requires
knowledge of full image size

LINE_SAMPLE_CHIP Coordinates in the coordinate
system of the OVERVIEW
related file.

Allows selecting the area of
interest using the smaller
OVERVIEW file. Server needs to
know scale factor of OVERVIEW
file.

NULL_REGION Irrelevant No chipping, no image.

Table A- 6: Specifying a chip

In one typical use case, assuming a large image product, a client could first retrieve the related file
of type “OVERVIEW”. The user can visually select the area of interest. The client will use the
GeoRegionType.LINE_SAMPLE_CHIP value to indicate the selected coordinates are based on
the OVERVIEW related file.

In another typical use case the user may have expressed an area of interest and the client
automatically orders chips of products overlapping that area to the geographic boundaries of the
area of interest. The GeoRegionType.LAT_LON would be used in this case.

4.2.2.1 OVERVIEW related file

The related file of type OVERVIEW must be an NSIF file. Because chipping will only chip a
single image segment (see section 4.2.2.2 on multi-image products for more details), it is
necessary that the OVERVIEW related file reflects the same structure as the NSIF product file.
This includes:

• Same number of image segments

• Image segments in same order

• All image sub-headers included.

In summary it must be a scaled down version of the NSIF product file.

STANAG 4559 requires a maximum image dimension of 1024x1024 for the OVERVIEW related
file. For multi-image NSIF files, this must be interpreted as the size of the NSIF CCS (Common
Coordinate System) data field.

For easy scaling, the OVERVIEW related file could be a reduced resolution image as specified in
NSIF-AEDP-4 Annex D. This implies a scale factor that is a power of 2, which can be expressed
in the IMAG field in the image sub-header. When using another scale factor, the ICHIPB Tagged
Record Extension (TRE) must be included to accurately specify the scale factor.

Scaling the image segments will also require changing their location within the CCS. Graphic
segment data that represents CGM vector data must be scaled similar to imagery, and the location
in the CCS must be accordingly changed.

Keeping the same block-masks and padding pixels as the full image segments can be useful in
some cases. Chipping is sometimes limited to a single block, so knowing the block structure can
be useful if the overview is used to define a chip.

ANNEX A TO

AEDP-5
(Edition 1)

A-30

In other cases keeping the overview file small may be a requirement, and using C3 (JPEG)
compression is desired. In keeping many small blocks this may cause a lot of processing overhead.
In such cases joining all blocks maybe desired.

Note that it is not possible for a client (nor for the server) to calculate the size of the image in the
product file from the size of the image in the OVERVIEW related file, taking into account the
IMAG sub-header field and ICHIPB TRE. The product file might be a chip itself, so the IMAG in
the product file may not be 1, and it could already have an ICHIPB TRE. So the client cannot use
the GeoRegionType.LINE_SAMPLE_FULL when ordering a chip based on the OVERVIEW
file, but must use the GeoRegionType.LINE_SAMPLE_CHIP.

The server must know the scale factor used to produce the OVERVIEW related file when a chip is
ordered with LINE_SAMPLE_CHIP. It could either store the scale factor in a file or database, or
re-compute it from the image size in both the OVERVIEW and product files.

4.2.2.2 Chipping multi-image products

NSIF image files can have multiple image segments. The key management factor with chipping of
multi-segment products is to understand how systems create products of this nature and the
respective use of Display Levels (DL), Attachment Levels (AL), Image Location (ILOC) and
Symbol Location (SLOC). Multiple image segments could be used to advantage when:

• Developing an image mosaic from segments of multiple files, e.g. the image of a coast
line.

• Annotating images, icons, or Moving Target Indicator points.

• Correlating ISR data for a multiple source product.

Chipping multiple image segments (all those that intersect with the chipping area) adds to the
complexity and overhead of managing the file. There are even some cases where it is impossible
to define the meaning of the order contents when dealing with multiple image segments.
Consequently the CST recommendation is to chip single image segments.

The ImageSpec structure contains a field "imageid". This field is intended to indicate which
image segment from a multi-segment NSIF file should be chipped. The imageid is numeric and
sequentially identifies the image segments starting with 0 for the first image segment within a
multi segment file.

4.2.2.3 Chipping multiple text and graphic segments

An NSIF file can contain multiple images, but also multiple graphic and text segments containing
additional annotations. The STANAG 4559 CST recommendation on image chipping means
ignoring multiple text and graphic segments. Therefore alternative solutions are provided for
complex images with text and graphics:

• Join all image segments (and possibly also graphics segments) into one image and chip
that. The resulting image will be of the requested size, including potentially cutting off
graphic segments on the chipping borders. The quality and integrity of the product present
a risk because most metadata are lost.

• Chip all images individually, assuming the chip coordinates are relative to the CCS
(Common Coordinate System) of the NSIF file.

ANNEX A TO

AEDP-5
(Edition 1)

A-31

• Exclude image segments that are completely invisible or include them with an empty
image to retain the metadata. In this case the CCS may be larger than the chipping
bounds.

• Or include only the main image

For files with Graphic segments e.g.:

• Include all graphic segments

• Include only graphic segments that are completely within the chipping bounds

• Include only graphic segments that are at least partly within the chipping bounds (but this
will mean the resulting CCS will be larger than the chipping bounds).

• Try to chip the graphic segments to exclude elements of a graphic segment outside the
chipping bounds. Again the quality and integrity of the product present a risk.

• Exclude all graphic segments

For Non-graphical segments like Text or DES e.g.:

• Exclude all

• Exclude Data Extension Segments (DES) but include Text, e.g. if the purpose of chipping
is to limit bandwidth and an extension segment contains a large audio or video recording,
then including the extension segment defeats the purpose of chipping.

• Include all

• Don't allow chipping if there is data extension segment that is not an overflow.

Below is a list of problems to be encountered when dealing with multi-segment image chips.

• When using LINE_SAMPLE_FULL or LINE_SAMPLE_CHIP, selection of multiple
image segments would require the coordinates to be in NSIF CCS and not the image
segment coordinate system. Since some image segments may be scaled, the CCS may not
be as accurate as the image coordinate system.

• A problem may be that one of the intersecting images was attached to a non-intersecting
image. The best thing to do in this case is to not include this intersecting image.

In general remove all segments including graphic and text attached to a segment that is removed as
a result of chipping.

• Annotating images and icons could be misinterpreted if they would be chipped and may be
only partly visible. Include only image segments, other than the main one, that are
completely within the bounds of the chipping area. This strategy will obviously not work
well for NSIF files with partly overlapping photos.

• Annotated images may only be useful with the graphic or text segments and arguable
retained.

But some graphics may be related to part of an image segment that is not in the chip.

• If chipping with GeoRegionType.LAT_LON, and the NSIF file contains multiple
image segments with geospatial location (IGEOLO field), each image segment must be
chipped individually to separate out irrelevant text and graphic segments. A

ANNEX A TO

AEDP-5
(Edition 1)

A-32

recommendation for putting those chips together in one NSIF file, specifically defining at
which location in the file -- potentially in the CCS -- is still being considered by the
STANAG 4559 Custodial Support Team.

Image segments, such as annotated images which lack NSIF IGEOLO data, cannot be chipped
with GeoRegionType.LAT_LON and must be removed from the chipped file.

4.2.3 Sub-header fields in a chipped image

When creating the image chip, some file and image sub-header fields need to be changed:

• NROWS, NCOLS: Change to reflect the size of the chipped image.

• PVTYPE, IREP, and others: If, besides chipping, also a different image mode or
compression is requested by the order.

• IGEOLO: When present IGEOLO must be recomputed to represent the new geospatial
bounds of the image. It must be recomputed even when an ICHIPB TRE is added or
changed. NOTE: In contrast, the BLOCKA TRE must not be recomputed when the
ICHIPB TRE is used.

• CLEVEL: The chip may be much smaller than the original NSIF file. It will contain just
one image segment, while the original NSIF file could have had several. These factors
may influence the CLEVEL.

• FDT: Change to represent the time when the file with the chip was created.

• FL, HL, NUMI, etc: The File Length, Header Length, number of segments, and related
fields all need to be recomputed.

• ONAME: Change the name of the Originator which can include library identification.

• OPHONE: Change the contact details of file Originator.

Other image sub-header fields must not be changed, specifically:

• IDATIM: defined as the date the image was acquired. See also NSIF-AEDP-4, Annex A,
section 17. Since chipping does not change the acquisition time, IDATIM must not be
changed.

4.2.4 Extended and user defined sub-headers

The Compendium of Controlled Extensions STDI-0002 contains useful information on including
TREs (Tagged Record Extensions) in a chipped or reduced size image. See the section on the
ICHIPB TRE and section 8.2.7 on reduced resolution imagery in STDI-0002. Another reference is
the NSIF-AEDP-4, Annex D, section on reduced resolution imagery.

Several TREs contain acquisition parameters needed to correctly interpret or geolocate the image.
In NSIF images the IMAG field in the image sub-header indicates whether those TREs were
recomputed in a reduced resolution image. The ICHIPB TRE is more relevant for chipping, its
presence indicates that other TREs were NOT recomputed. The information in the ICHIPB TRE
allows a client to compute the coordinates in the chipped image back to the original image, and
thus to the other TREs that contain information relative to the original image.

ANNEX A TO

AEDP-5
(Edition 1)

A-33

Thus NSIF image segments there are two options to supply geopositioning data when creating a
chip:

1. To recalculate and update all metadata in the TREs and not include an ICHIPB tag, or

2. To leave the existing metadata in the TREs unchanged and add the ICHIPB tag.

General CST recommendation is to always use the ICHIPB TRE, so the other TREs can be
included in the chipped image without change. Repeated recalculation of positioning metadata risk
deteriorating the quality of the metadata.

If the original image already contained an ICHIPB TRE, the data contained in it must be
recomputed to reflect the new chip-of-a-chip. The offsets and magnification must refer to the full
image size, because the other TREs refer to it. Note that the original full size unchipped image
need not be available in the library. The ICHIPB TRE carries enough information to correctly
interpret the other TREs.

Some support data in TREs relates to scan blocks within a single blocked image segment.
Chipping can cause some scan blocks to be excluded from the chip, invalidating support data. The
ICHIPB TRE can only relate back to a single original scan block number, STDI-0002 therefore
recommends not chipping across block boundaries.

4.2.5 Naming of file(s) in the delivery package

Annex D, Appendix 1, section D-1-3 of STANAG 4559 describes the file naming strategy.

Specifying multiple FTP locations with a non-empty file_name in at least one FileLocation
and ordering separate files should not be allowed, because that could result in differently named
files at each FTP site, and no possibility to report this back in the
DeliveryManifest.elements structure. The DeliveryManifest.packet_name must be
filled in and this field should contain the product filename potentially with its extension e.g .tar or
.zip.

4.2.6 Reduced sized images

The OrderMgr can alternatively create a reduced sized image. In STANAG 4559 Table D-1-6,
the ImageSpec.rrds field is intended for this.

• An rrds of 0 indicates the image is at normal size.

• An rrds value of 1 requests the image at half of the normal width and height.

• An rrds value of 2 requests the image at a quarter of the normal width and height.

• For each further level the width and height need to be divided by 2.

See also NSIF-AEDP-4, Annex D - NSIF approved Support Data Extension Listing for
discussions on setting the IMAG sub-header field correctly.

Multiple rrds levels could be requested since the rrds field is a list. The intent is to ship multiple
files, one for each requested level. The DeliveryDetails for the product should contain multiple file
names, one for each requested level.

ANNEX A TO

AEDP-5
(Edition 1)

A-34

4.3 OrderRequest interface

4.3.1 OrderSize in request_details

The OrderRequest.request_details method must provide, among other details, an
OrderSize. The OrderSize may not be accurately known until the order is completed,
especially when the order will be a zipped file or must do chipping.

The OrderSize in the request_details need not be static. It could contain a best guess
initially, and change over time when a better guess can be made. Starting by supplying the total of
all file sizes provides a reasonable value. Responses to using 0.0 to indicate the OrderSize is
an allowed practice, but not recommended based on uncertain results.

4.3.2 FTP Server for Order Manager

Using the OrderMgr, the client needs to have access to an FTP server. Clients could set up an
FTP server on their own system, allowing direct file access to the delivered package.

Some clients may not be able to have a local FTP server. They can use any other FTP server they
have access to. The server would deliver the package there, and the client needs to retrieve it. This
solution may double the network traffic, because the package needs to go over the line twice.

The FTP server could be local to the NSILI server. In this case the package needs to be only once
on the network. Server administration to maintain FTP accounts for all clients is an additional
burden of this option.

A firewall between client and server may also influence the location of the FTP server. The
security section ANNEX B2 of this AEDP provides more discussion. Due to firewall restrictions
the FTP server may require use of passive FTP (allowing the server to choose the data port).
Clients must be able to use passive FTP (as well as active, and negotiate with the server which one
to use).

4.4 ProductMgr
The ProductMgr Interface provides operations that allow the client to determine characteristics
of a specific product and retrieve related files associated with that product, such as thumbnail and
overview images.

4.4.1 GetParametersRequest

Clients can access product metadata attributes in two ways:

1. Pass the desired result attributes to the CatalogMgr.submit_query method.

2. Request only the product reference via the CatalogMgr and use the
ProductMgr.get_parameters method to get the attributes.

Besides requesting a list of attributes, a few special names can be passed to the
ProductMgr.get_parameters method:

• CORE: to request all attributes from the NSIL_CORE view. The DAG returned through

ANNEX A TO

AEDP-5
(Edition 1)

A-35

the GetParametersRequest.complete method must be structured in the same way as
a DAG returned by SubmitQueryRequest.complete_DAG_results.

• ALL: to request all metadata attributes available for the product. This will include
attributes that are not queryable.

• ORDER: to review attributes relating to ordering. This could include both server
capabilities with respect to ordering, such as supported product formats, packaging
specifications, transformations, and product metadata needed for ordering, such as the size
of the image. Order attributes are further discussed in section 4.6 of this Annex.

4.4.2 GetRelatedFilesRequest

Related files like a thumbnail or overview can be retrieved using the ProductMgr. Libraries
may also provide direct access URLs in the metadata as an alternative retrieval method. In the
NSIL_CORE view the DARFI field is intended for these direct access URLs.

The location parameter of the ProductMgr.get_related_files method provides the
hostname, username and password, and directory path where the server can copy the related files.
It is assumed, though not explicitly documented in the STANAG, that the FTP protocol with
standard FTP ports is used to deliver the files, just as the OrderMgr delivers files by FTP.

While the list of Related File Types was at one point to include footprint, text, xml, reccexrep,
recon4, video, html and audio the fact that there is no specification for these file types caused the
STANAG 4559 Custodial Support Team to not include them in the list of standard related file
types in STANAG 4559 Appendix 1 Annex D. The CST does recognize that these and other file
types will be found in an ISR product library and should be acceptable to a knowledgeable NSILI
implementation.

The ProductMgr.get_related_files method can provide the main product file as a related
file. Unlike the OrderMgr no alterations can be selected. The related file type “PRODUCT” is
recommended for this case.

The ProductMgr can be used to provide alterations by using a naming convention for the related
file type. The capability will be limited to predefined transformations, and usually these
transformations have been performed by the server at ingest rather than being done on request. But
it should be pointed out that the related file types need to be standardized, or at least well-
understood between client and server for the results to be reliable. For example the related file type
“OVERVIEW_JPEG” could provide the overview image in JPEG format instead of NSIF format.
“PRODUCT_R1” could indicate a related file in NSIF format at half the original size.

4.5 AccessManager
The ProductMgr and OrderMgr implement the AccessManager interface. The
AccessManager methods are really only useful for orders. The ProductMgr also implements
it because it was anticipated that some systems might store thumbnails or overview images (or
other related files) off-line. But most systems store those on-line.

NSILI clients should therefore prefer use of the OrderMgr to call the AccessManager
methods.

ANNEX A TO

AEDP-5
(Edition 1)

A-36

In STANAG 4559 the ProductAccess use_mode has been removed to make it clear that
using the AccessManager methods on the ProductMgr is not useful.

Since the server still needs to implement the AccessManager methods in the ProductMgr, it
may choose to implement them with the same code as the OrderMgr.

4.6 Order Attributes – get_parameters Request
The current description of order related attributes for ProductMgr.get_parameters request
are defined in Table D-8 of STANAG 4559.

5 Expand Query Process , Load Data Model – Develop
DataModelMgr

This subclause is to be revised at a later time.

6 Optional Manager (StandingQueryMgr,
StandingOrderMgr, CreationMgr)

This subclause is to be revised at a later time.

7 Requests and Callbacks
The utility of including RequestManagers and Callbacks in the Client allow enhanced
automation of the client and server interface. The RequestManager provides operations for
requested products or data sets. The RequestManager provides selector and modifier
operations for a Request instance, which is a specialization of the abstract interface Request.

The Callback object is a mechanism that allows the Request to notify the client that
processing of a Request has transitioned into a state which is specified to trigger a Callback.
The States which trigger a Callback are specific to each concrete Request. A client can
register zero or more Callback objects with a Request. The client indicates the Callback
object to be registered by supplying a reference to a Callback object in a Callback. A
successful invocation of this operation returns a CallbackID that uniquely identifies that
instance of Callback.

7.1 Requests
The RequestManager interface serves to define operations common to all Managers that use
Request objects as part of their operations. This interface is abstract. Also, these common
operations allow a client to interact with unfamiliar forms of RequestManagers. The
operations defined on RequestManager serve to allow clients to identify active Requests
and control their lifetimes.

Each Request being managed by a RequestManager has a limited lifetime. This lifetime is

ANNEX A TO

AEDP-5
(Edition 1)

A-37

considered to begin when the processing it represents reaches the COMPLETED State and ends
when the timeout set for that particular Request has elapsed. After a Request’s lifetime has
expired a RequestManager is free, but is not required, to delete that Request as well as all
resources associated with that Request.

7.1.1 Deleting a request

The effect of calling RequestManager.delete_request for a request that is not in an end-
state, such as PENDING, RESULTS_AVAILABLE or SUSPENDED state, should be to first
cancel the request, then delete it. Because the CANCEL state will not trigger a notify method on the
Callback, the client, when using a Callback, will only see a Callback.release.

7.1.2 Request.cancel results

In comparing Request.cancel and RequestManager.delete_request, both will stop
request processing and indicate that no more results are needed. Request.cancel will keep
the Request, and thus the resources associated with it, until a timeout period has passed.
RequestManager.delete_request will allow the server to immediately delete the request.

The client should not expect any results to be available after calling cancel. The server is
allowed to free resources associated with a request, except those needed during the timeout period,
after a call to cancel.

The only reason to use Request.cancel is to be able to use the Request object to get the
State. For example when a client uses a Request, and the server or a server administration
client, want to cancel a Request for some reason, the cancel method can be applied. The
client will be able to check the Request State to know the Request was cancelled and not
normally ended. Clients are recommended to use RequestManager.delete_request to
free server resources as soon as possible.

7.1.3 SUSPENDED state

The SubmitStandingQueryRequest and SubmitQueryOrderRequest have methods
pause and resume to make the Request go in and out of the SUSPENDED State. Other
Requests do not have such methods. Still GIAS 351 Appendix G indicates the SUSPENDED
state for other requests. Requests other than SubmitStandingQueryRequest and
SubmitQueryOrderRequest are not required to implement the SUSPENDED State.

Advanced servers may put a request in a SUSPENDED State, e.g. when the Request is
inactive and the server wants to temporarily swap it to disk to free memory.

7.2 Callback

7.2.1 SubmitQueryRequest Callback and State Interpretation.

When using callbacks with a SubmitQueryRequest, the client expects the server to start
processing the request and notifying the client when finished. In the case of the
RESULTS_AVAILABLE State the client will receive notification when enough results are

ANNEX A TO

AEDP-5
(Edition 1)

A-38

present to allow the client to call the complete_XXX_results method without blocking. The
server should not wait for a call to SubmitQueryRequest.complete before starting to
process the request.

If the client has not called the set_number_of_hits method, the server must choose some
number of hits to be able to go in the RESULTS_AVAILABLE state. Some implementations will
never hit the RESULTS_AVAILABLE state, because their initial number of hits is very high.
Those implementations will immediately go to the COMPLETED state. The state diagram for
SubmitQueryRequest in [GIAS351] allows such a state change from start to
IN_PROGRESS to COMPLETED without ever hitting RESULTS_AVAILABLE.

A more common situation is when the number of results is less than the number of hits per
invocation of complete_XXX_results. Before getting enough results to trigger
RESULTS_AVAILABLE, all results have been computed and the request goes to the
COMPLETED state.

7.2.2 Callbacks are optional

For callbacks, it bears mentioning that both clients and servers that are supporting callback
should consider failure recovery mechanisms. Both systems need to be able to elegantly handle all
conditions that could reasonably occur regarding system availability. Since callback is
optional, clients should also be able to fall back to synchronous retrieval of results, in case a server
is not supporting callbacks.

7.2.3 Preventing callback caused deadlocks

Implementations have yielded the results that attention should be given to the synchronous nature
of CORBA calls. For example, consider the pieces of pseudo code presented in Listing A-17
through Listing A-19:

Client1.java

callback = new Client1CallbackImpl();
org.omg.CORBA.Object ref = activate_object(callback);

synchronized(callback) {
 // Attempt to make sure the callbackId is set in our callback
 // before the server calls it. This may cause a deadlock.
 String callbackId =
 request.register_callback(CallbackHelper.narrow(ref));
 callback.setCallbackId(callbackId);
}

Listing A-17: New Client Callback, Java Example

ANNEX A TO

AEDP-5
(Edition 1)

A-39

Client1CallbackImpl.java:

public synchronized void setCallbackId(String aCallbackId) {
 callbackId = aCallbackId;
}

public synchronized void _notify(UCO.State theState,
 UCO.RequestDescription description) {
 log("Called callbackid " + callbackId + "...");
 ...
}

Listing A-18: Client Callback with Public Synchronization Voided, Java Example

SomeRequestImpl.java (Server Side)

public String register_callback (Callback aCallback)
 throws InvalidInputParameter, ProcessingFault, SystemFault
{
 ...
 if (alreadyCompleted) {
 aCallback._notify(getState(), getDescription());
 }
 ...
}

Listing A-19: Public Register Callback, Java Example

Here the client tries to make sure the logging in the callback_notify method will print a
valid callbackId. But the server, on registration of the callback immediately calls back the
_notify method (synchronously). Since the client is holding a flag on the callback object,
the server call has to wait until the client releases the flag, but the client is waiting for the server to
return from the register_callback. In other words this is a deadlock situation.

Below is another example, this time deadlocking the server.

Client2.java

private SubmitQueryRequest queryRequest = null;

public void run() {
 queryRequest = catalogMgr.submit_query(...);
 callback = new CallbackImpl();
 org.omg.CORBA.Object ref = activate_object(callback);
 queryRequest.register_callback(CallbackHelper.narrow(ref));
}

Listing A-20: Private Callback to Deadlock Server, Java Example

ANNEX A TO

AEDP-5
(Edition 1)

A-40

SubmitQueryRequestImpl.java: (Server Side)

public synchronized String register_callback (Callback aCallback)
throws InvalidInputParameter, ProcessingFault, SystemFault
{
 ...
 if (alreadyCompleted) {
 aCallback._notify(getState(), getDescription());
 }
 ...
}

// Synchronized to prevent multiple concurrent calls
public synchronized complete_DAG_results(...) {
 ...
}

Listing A-21: Public Synchronized callback, Java Example

While registering the callback, the client is called back by the server already, and immediately
tries to get the results. But since the server is holding the flag within the register_callback
method, the complete_DAG_results method is waiting for the release of the flag, which will
never happen, affecting a deadlock.

Solution:

1. Implementers of NSILI clients must be aware of this, and try not to synchronize
callback code.

2. Implementers of NSILI servers must either make the callback asynchronous or use a
separate thread to do the callback, thus not blocking the register_callback
method.

In Java the callback can be done asynchronously using code presented in Listing A-22.

org.omg.CORBA.Request request = cb._request("notify");
Any stateAny = request.add_in_arg();
StateHelper.insert(stateAny, getState());
Any requestDescriptionAny = request.add_in_arg();
RequestDescriptionHelper.insert(requestDescriptionAny,
getDescription());
request.send_oneway();

Listing A-22: Asynchronous callback, Java example

The disadvantage of asynchronous calls is that there is no way to get exceptions back. Opening
the port seems to still be synchronous, and an exception will result if the client cannot be reached.
For example, with a firewall between a client and server that didn't allow the connection to be
made back from the server to the client, the server will hang for some time in the send_oneway
method until the attempt times out. CORBA debugging showed that it was trying to open the port
on the client.

ANNEX A TO

AEDP-5
(Edition 1)

A-41

8 Lessons Learned
This AEDP-5 will be used as a means to communicate lessons learned from experiments, trials and
operational experiences, which will be documented in this section of Annex A.

ANNEX B TO
AEDP-5

(Edition 1)

B-1

ANNEX B – NATO ISR DISSEMINATION
ARCHITECTURE

1 History and Future of ISR Data Discovery and
Retrieval

The US National System for Geospatial-Intelligence (NSG) is the original United States
enterprise that implemented ISR data storage and dissemination using the GIAS/UCOS
(Geospatial Information Access System/ USIGS Common Operating System) interfaces. The
National Geospatial-Intelligence Agency (NGA) led the development of the interface standards
and later development of the library and client implementations that constitute the enterprise.

LibraryLibrary

LibraryLibrary

LibraryLibrary

Figure B-1: Overview of Implementations in U.S. National System for Geospatial Intelligence
(NSG)

ANNEX B TO
AEDP-5

(Edition 1)

B-2

Common Data Model provides user common view of data
across the Enterprise

Sources Information
Types

~ 300 types Libraries

National
Imagery
Library

MC&G
Imagery
Library

DPDW2

Imagery
Product
Libraries

Imagery
Product
Libraries

Imagery
Product
Libraries

Imagery
Product
Libraries

Imagery
Product
Libraries

Imagery
Product
Libraries

Users
With COTS
Browsers
•Queries
•View results
•Orders

I
A
S

I
A
S

I
A
S

I
A
S

Command
Imagery
Libraries

Command
Imagery
Libraries

Command
Imagery
Libraries

Command
Imagery
Libraries

Command
Imagery
Libraries

Command
Imagery
Libraries

I
A
S

National
Archive
and Storage

Tactical

Coverage
For Unique
Area of the
World

Geospatial
Products

Reference
Imagery

Figure B-2: Commitment to the long-term use of NSILI

Figure B-2: Commitment to the long-term use of NSILI and Figure B-3: The National System for
Geospatial-Intelligence (NSG) in a Coalition network illustrate the network architecture for the
NSG. Figure B-2 stresses the concepts of multiple data sources and libraries that by application or
common data models are made accessible by analysts to bring together the geospatial-intelligence
picture. There are over 300 installed data servers across the NGA, Command, Tactical and
Coalition networks. These data servers exist at multiple classification levels and in multiple
security environments; it is important not to infer that connectivity exists between all systems
represented on the diagram.

ANNEX B TO
AEDP-5

(Edition 1)

B-3

CILCIL

IPLIPL CILCIL
IPLIPL CILCIL

CILCIL
IPLIPLCILCIL

IPLIPL CILCIL

IPLIPL

IPLIPL

IPLIPL

IPLIPL

IPLIPL
MCGILMCGIL

DPDWDPDW
NetworksNetworks

NetworksNetworks

NOC-PNOC-P

St Louis

ArnoldArnold

Networks

Bethesda
LangleyLangley

RestonReston

Site 16

JRIL
PACOM

EUCOM
NAIC

STRATCOM
480th

CILCIL

NNY

Area JWAC

NetworksNetworks

NGA

SCI-NILSCI-NIL

COD-ACOD-A

COD-A
CIL

COD-A
CIL

DIACDIAC

IAS

IAS

IAS
IAS

IAS

IAS

IAS
IAS

IAS

IAS

IAS

IPLIPL

IPL IASIPLIPL IAS

IPL IASIPLIPL IAS

IPL IASIPLIPL IAS
IPL IASIPLIPL IAS

Blue= Secret/Collateral
Green= TS/SCI

IA
CIL
IA

CIL

NAV-O

IAS

IPLIPL

ONI

CIL
IAS

IPLIPL

IPLIPL

IPLIPL

IPLIPL

CILCIL

CILCIL

*A *A

A*

IAS

A*

Note: Not all lines on diagram
imply connectivity –security
enclaves not shown

Tactical/Command/Coalition Nets

Figure B-3: The National System for Geospatial-Intelligence (NSG) in a Coalition network

2 Security
The Scope of STANAG 4559 assumes that security aspects of data management are handled
externally from the API, as described in the STANAG 4559 Aim section: “The overall goal is for the
users, who may be intelligence analysts, imagery analysts, cartographers, mission planners,
simulations and operational users from NATO countries, to have timely access to distributed ISR
information if Host Nation operational restrictions and security policies permit this access”.

This view is reinforced in the ANNEX B Key Assumption d: “The NSIL interface assumes that
servers and clients are installed on System High networks with network and workstation protections
appropriate to the classification level of the network. It is assumed that all information loaded into
an NSIL library is authorized for access by all users authorized for the network. Neither NSIL
libraries nor clients add additional protections beyond that provided by the network and workstation
security protections of the operational network”.

GIAS, on which STANAG 4559 is based, supports use of an AccessCriteria object which
could be passed when getting a manager, e.g. the CatalogMgr. In STANAG 4559 the option to
not use the AccessCriteria was followed. To allow security policies within the STANAG
4559 API, one could employ the GIAS AccessCriteria mechanism. Introduction of
AccessCriteria into a future version of the STANAG will affect server and client

ANNEX B TO
AEDP-5

(Edition 1)

B-4

implementations, but it is anticipated that this inclusion will generate relatively few changes.

Employing the AccessCriteria mechanism is not the only option for implementing security
policies with STANAG 4559. Another option would be to build security mechanisms around (or on
top of) STANAG 4559 libraries. Two such mechanisms are discussed in the following subsection:

1) Community of Interest (COI) released information

2) Security adaptor layer

2.1 Community of Interest Released Information
One approach for looking at security is to look at the “space” of information sharing. STANAG 4559
has traditionally focused on an all-inclusive information sharing space. In reality, information
sharing architectures could often be configured as multiple interconnected subsets of the whole
space. The subsets are so-called “Communities of Interest” (COI).

A COI is defined as a dynamic group, set up to perform or support a mission, operation or activity.
A COI may be a stable group such as “HQx / J2 – Intel” but it may also be formed ad hoc for a
specific mission.

A COI is a “space” where information is shared. As such it is homogeneous in terms of security; i.e.
all COI participants are in the same security domain.

It can be assumed that the different COIs will filter the information they expose/release to other COIs
exemplified by the BICES/LOCE network. STANAG 4559 libraries could be used as the
information exchange mechanism between these COIs, as illustrated in Figure B-4: COI's and
STANAG 4559 Libraries below.

NATO/Coaltion
Network

NSIL

NSIL

NSIL

NATO / CoalitionNATO / Coalition
NetworkNetwork

STANAG 4559STANAG 4559
Based InformationBased Information

SharingSharing

NSILI

NSILI
NSILI

COI x

COI y

COI z

NSIL NSIL

Release
Filter

Release
Filter

Release
FilterNATO/Coaltion

Network

NSIL

NSIL

NSIL

NATO / CoalitionNATO / Coalition
NetworkNetwork

STANAG 4559STANAG 4559
Based InformationBased Information

SharingSharing

NSILI

NSILI
NSILI

COI x

COI y

COI z

NSIL NSIL

Release
Filter

Release
Filter

Release
Filter

Figure B-4: COI's and STANAG 4559 Libraries

Architectures as shown in Figure B-4 above will allow the different COIs to have one or more
STANAG 4559 libraries within the COI were all clients will have access to all information. At
the same time the COI can dedicate one STANAG 4559 library as the “exchange” library were

ANNEX B TO
AEDP-5

(Edition 1)

B-5

only information approved for release outside the COI will be posted. When the information has
been released to the exchange library, the original STANAG assumption that all information
loaded into the library is available for access by all authorized users still applies.

The approach of using STANAG 4559 libraries to expose released information from COIs to the
coalition is being employed in the Multi-sensor Aerospace-ground Joint ISR Interoperability
Coalition (MAJIIC) project.

2.2 Security adaptor layer
Another approach for working with Communities of Interest is to move the “exchange libraries”
on the inside of the release filter. This option is illustrated in Figure B-5: Information Exchange
Gateways and STANAG 4559 Libraries below.

NSIL
Server

NSILI to
“Web Service”

Adaptor

“red COI”

“blue COI”

4559,
CORBA

HTTP,
SOAP

Information
Exchange
Gateway

(IEG)

HTTP,
SOAP

NSIL
Server

NSILI to
“Web Service”

Adaptor

NSIL
client

“r”
NSIL
client
“b”

NSIL
Server
NSIL
Server

NSILI to
“Web Service”

Adaptor

NSILI to
“Web Service”

Adaptor

“red COI”

“blue COI”

4559,
CORBA

HTTP,
SOAP

Information
Exchange
Gateway

(IEG)

HTTP,
SOAP

NSIL
Server
NSIL
Server

NSILI to
“Web Service”

Adaptor

NSILI to
“Web Service”

Adaptor

NSIL
client

“r”
NSIL
client
“b”

Figure B-5: Information Exchange Gateways and STANAG 4559 Libraries

Release filter architectures often include firewalls, which typically will prevent an NSIL client on
the outside of the COI to communicate with an NSIL server on the inside using the CORBA-
based STANAG 4559 interface. This characteristic presents an obstacle because CORBA requires
more ports to be opened than a strict firewall configuration will allow. A solution to the
restrictions in the release filter is to use a different communication protocol between the COIs,
e.g. pure HTTP, or a Web Service using SOAP, which needs only one port and is ASCII
character based.

For clients residing within the same COI as the server, normal STANAG 4559 interfaces between
clients and servers will apply. The original STANAG assumption that all information loaded into
the library is available for access by all authorized users still applies as long as clients and servers
are within the same COI.

Instantiations of this notional architecture can take several forms. Depending on how advanced
the adaptor layer is designed, security features like authentication and integrity can be
implemented between the COIs. It is also possible, based on authentication, to grant different
clients different levels of product access.

ANNEX B TO
AEDP-5

(Edition 1)

B-6

An example of one such architecture was demonstrated by NC3A at the Joint Warrior
Interoperability Demonstration (JWID) in 2004. In the JWID scenario, clients on the “blue” COI
were querying an NSIL server on the “red” COI by communication over HTTP through an
“HTTP-to-NSILI” adaptor residing on the inside of the red COI. Similarly clients on the red COI
were communicating with the blue COI server.

The “release filter” employed at JWID was the so-called Information Exchange Gateway (IEG).
The IEG is a NATO developed concept to achieve a means to concentrate (point of presence) and
secure information exchange between NATO Bi-SC Automated Information Systems and
Command and Control systems that reside in external domains.

• This security architecture, by tailoring the “adaptors”, should in theory be configurable to
support any security requirement.

• The “downside” is that clients cannot use the STANAG 4559 interface directly and need
to communicate through adaptors with servers in external COIs.

• Implementations of such adaptors should be a system specific issue and are not addressed
by STANAG 4559, or in AEDP-5.

3 STANAG 4559 and Web Services
The current trend in software development is to employ Web Services as part of system
architectures, and a question that needs to be answered is ‘how Web Services relates to STANAG
4559’. There are two radically different ways to look at Web Services and STANAG 4559:

1) Web Services can be employed as a complementary technology to the CORBA based
STANAG 4559. Special services implemented using Web Services technology, that can
add value to STANAG 4559 based architectures:

a. Advanced security capabilities using authentication and integrity checks as described
in Annex B Section 2 above.

b. Allow “new client implementations” simplifying access to information in STANAG
4559 libraries, assuming the Web Service adaptors provide very basic functionality,
and hence provide a potentially quicker path to interoperability.

2) Web Services can be used to build a completely new and alternative architecture for
sharing ISR information, employing different querying mechanisms, ordering
mechanisms and standardized web-based/ service orientated technologies applied through
other standards.

It is not within the scope of the AEDP-5 to enter into an analysis of pros and cons of Web Service
based architecture versus CORBA based architecture. Nor will AEDP-5 attempt to identify any
benefits in choosing to re-implement a library sharing mechanism using Web Services. Because
of the number of legacy systems that exist using the STANAG 4559 API, and because the
STANAG 4559 API is a mature and proven technology, this document will chose only to look at
Web Services as a technology for adding value to STANAG 4559 architectures and not as a
replacement technology.

ANNEX B TO
AEDP-5

(Edition 1)

B-7

3.1 Augmenting STANAG 4559 Libraries with Web Services
Providing Web Services interfaces to STANAG 4559 based libraries can be implemented as
adaptor layers directly on the STANAG 4559 server, or as adaptor layers on STANAG 4559
clients, as shown in Figure B-6: Augmenting STANAG 4559 Libraries with Web Services below.

Web
Service

y

STANAG
4559

Server

CORBA

WS IPL
Client

1

“traditional”
4559

clients

CORBA

“SQL”

DB

Web
Service

xSTANAG
4559
client WS IPL

Client
2

HTTP, SOAP

IPL STANAG 4559 to
WS adaptors

Web
Service

y

STANAG
4559

Server

CORBA

WS IPL
Client

1

“traditional”
4559

clients

“traditional”
4559

clients

CORBA

“SQL”

DB

Web
Service

xSTANAG
4559
client WS IPL

Client
2

HTTP, SOAP

IPL STANAG 4559 to
WS adaptors

Figure B-6: Augmenting STANAG 4559 Libraries with Web Services

3.2 Web Service Adaptors with NSILI Clients
It is probably both simpler and cleaner to integrate the Web Service adaptors with the STANAG
4559 client software, than integrating directly with the server software.

In this instance the Web Service adaptors wrap a co-located STANG 4559 Client and Server with
a thin layer of web-services that expose (and augments, if required) the full range of existing
STNAAG 4559 functionality without overheads such as CORBA communications or issues with
opening CORBA ports through a firewall. This web service layer does not preclude use of
standard CORBA connections, such as other local STANAG 4559 servers with the LAN; the web
service layer thus leverages, as much as possible, the existing STANAG 4559 architecture and
knowledge base. Figure B-6: Augmenting STANAG 4559 Libraries with Web Services with
Web Services shows are representation of wrapping the STANAG 4559 functionality.

Integrating Web Services with a STANAG 4559 client is the approach chosen by the
NATO/Coalition project Shared Tactical Ground Picture (STGP). In STGP, the content of a
STANAG 4559 based CAESAR/MAJIIC Coalition Shared Database (CSD) is exposed through
Web Services.

4 Multiple Libraries and Bandwidth Management
There will be scenarios on inhomogeneous networks where available bandwidth will vary
between network nodes. Figure B-4: COI's and STANAG 4559 Libraries and STANAG 4559
Libraries of this Annex could be seen as an example of such a network. In such networks clients
in one network node might need to access libraries residing on different network nodes. A

ANNEX B TO
AEDP-5

(Edition 1)

B-8

consequence of such architectures is that one particular product might travel multiple times
between two nodes (e.g. two clients in node A asks for the same image from an IPL in node B).
This multiple transmission of the same product between nodes is unnecessarily reducing the
overall available bandwidth.

Solutions to solve the problem of duplicate transmissions over a wide area network are outside
the scope of STANAG 4559, but this AEDP will provide a short overview of potential
approaches.

There are at least three different approaches that could be chosen to address this problem. Each of
the three approaches assumes that there is at least one STANAG 4559 library per network node,
and each of the solutions assumes that the clients only connect to one server, assumed to be a
local server residing on the same network node.

Alternative solutions:

1) Metadata only replication with product caching: All metadata is replicated/synchronized
between libraries on all nodes. After the first client on a node pulls down a product, the
product is cached within the network node. If a second client on the same node requests
the same product it is fetched from the local network cache.

2) Full product replication: All products are replicated between all libraries on all nodes.
This means that clients will always find every product at their local library. A penalty of
this approach is that everything is replicated whether it is needed at a node or not. This
may lead to wasteful bandwidth usage, and does not harvest harmonized metadata.

3) Search broker with partial product caching: The search broker will transparently perform
queries on remote libraries on behalf of its client. After a client has downloaded a
product, it might be cached as long as the client uses direct access to the product and is
not using the OrderMgr.

Assuming that the typical scenario will have both:

• library contents that consist of products that are mostly of a size that is significantly
larger than the metadata needed to describe these products, and;

• where clients frequently request products from servers residing in remote nodes,

the preferred solution is probably the first one - “metadata only with product caching”. Product
caching will have a better effect on saving bandwidth compared to the third solution with partial
product caching since it will also allow caching of products ordered through the OrderMgr. If the
assumption that frequent requests to servers in remote nodes is not correct, the third solution
might be an equally good solution.

The second solution is not a viable alternative if there are any large-sized products in the libraries,
which there typically will be given that images and video clips are normally large-sized files.

One consequence of employing the metadata replication solution is that the server software must
be extended such that the OrderMgr can function as a proxy to the remote library OrderMgr in
cases when the product resides with a remote library. In addition to this extension, a mechanism
for ingest of metadata from remote libraries must be implemented, and each product must be
universally and uniquely identifiable in the metadata. In other words, metadata must only be
received from the “source” library to prevent multiple metadata entries for the same product.

ANNEX C TO

AEDP-5
(Edition 1)

C-1

ANNEX C – TEST AND CERTIFICATION

1 NSILI Server Test Suite
The development of the NSILI Server Test Suite is a continuing collaboration between NSILI
Custodial Support Team and MAJIIC members. The philosophy is documented in “NSILI
SERVER TEST SUITE SPECIFICATION” which is currently available on the internet with
the promulgated edition of STANAG 4559.

1.1 Test Preconditions

The current version of the NSILI Server Test Suite test suite requires data to be present in the
server being tested otherwise a number of tests will fail while others will fail to fully test the
server in a meaningful way. Certain tests may also fail if the data is in the wrong format,
notably the testGet_related_files test case would fail if there is no data containing
related THUMBNAIL files. This can be resolved by ensuring a standard data-set is loaded
into the Server before the test suite is run. The exact makeup of a data-set needed to fully
exercise the Test Suite is outside of the remit of this document but the following provides
some guidelines:

The dataset should conform to the following rules
• It should contain known quantities of products of a variety of all data types supported

by the STANAG
• It should contain a known number of products within a specified geographic bounds
• It should contain a known number of products with associated related files and their

types

If the STANAG Test Suite specification is updated to define such a data set then the Test
Suite could be updated to provide more checking of return types. For example given, an
assumption about the dataset contents, the
ProductManager.get_related_file_types() method could be checked to ensure
that the correct range of types for a given product type are supported.

The Test Suite specification should not attempt to define the exact contents of a data set,
instead it should merely define a set of rules that should enforce that the Test Suite can more
closely check that the Server being tested conforms to the STANAG.

2 STANAG Compliance
Compliance to the ISR Standardization Agreements and the NIIA are not rigidly qualified for
all of the STANAGs, although measures are being taken to establish test and certification
laboratories or test suites for each. The NATO ISR Interoperability Architecture provides a
foundation and means to collect, store and exchange data and adheres to accomplishing the
levels of interoperability. For these reasons the Joint ISR Capability Group leads or
participates in trial, exercise and experiment events that help implementers determine their
levels of interoperability and development program to accomplish the desired exchange
capability.

ANNEX C TO

AEDP-5
(Edition 1)

C-2

NATO interoperability publications define four levels of interoperability. Those levels of
interoperability are:

Degree 1 (Unstructured Data Exchange): Involves the exchange of human-interpretable
unstructured data such as the free text found in operational estimates, analysis
and papers.

Degree 2 (Structured Data Exchange): Involves the exchange of human-interpretable
structured data intended for manual and/or automated handling, but requires
manual compilation, receipt and/or message dispatch.

Degree 3 (Seamless Sharing of Data): Involves the automated sharing of data amongst
systems based on a common exchange model.

Degree 4 (Seamless Sharing of Information): An extension of degree 3 to the universal
interpretation of information through data processing based on co-operating
applications.

ANNEX D TO
AEDP-5

(Edition 1)

D-1

ANNEX D – CONFIGURATION MANAGEMENT PLAN

1 Purpose and Scope
This Annex-D provides the framework for configuration management of STANAG 4559 and all
associated documents. Participating NATO member nations define their respective levels of
participation in the development and management of this document and other documents
affiliated with STANAG 4559 - NSILI. All NATO member nations have equal opportunity and
are encouraged to have their respective positions voiced in the STANAG 4559 community.
Decisions made within this framework are subject to final approval of NATO Air Forces
Armament Group (NAFAG) Joint Capabilities Group - ISR (JCG-ISR) in order to ensure the
proper placement of STANAG 4559 within the overall NATO Imagery Interoperability
Architecture (NIIA). The configuration management structure outlined in this document is
compatible with the NATO guidelines defined in AAP-3, Procedures for the Development,
Preparation, Production, and the Updating of NATO Standardization Agreements (STANAGs)
and Allied Publications (APs).

A key element of the configuration management process is the management of requests for
change by individual nations. However, part of the configuration management process is to
address coordination of STANAG 4559 with library interface structures of aligned standards
bodies, including other NIIA STANAGs, NATO groups such as Intelligence Project
Implementation Working Group (IPIWG) and the International Organization for Standardisation
(ISO). As changes are made that impact the discovery and retrieval or ISR data profiles,
adjustments will have to be documented and submitted for sustaining interoperable data exchange
through the community of data providers and users.

2 STANAG Management Organization
Each NATO member nation is responsible for funding its own participation. Although each
NATO member nation can assign representatives to the STANAG activities defined herein, any
assigned representatives are expected to be active participants.

2.1 Joint ISR Capability Group
The functional manager of the STANAG 4559 is the Joint Capabilities Group - ISR (JCG-ISR).
The All Source Intelligence Integration SubGroup (ASIISG) will manage technical application of
the STANAG within the NIIA and appoints the custodian to maintain and co-ordinate the
technical content of the 4559 STANAG and supporting documents. The JCG-ISR also supports
the Custodian Support Team by supplying National representatives and technical experts.

2.2 Response to National STANAG Commitment
Should the STANAG 4559 Custodian be unable to properly execute business due to repeated lack
of participation at the meetings, the Custodian shall report the lack of participation to the parent
organization, who shall request that the representative of the respective nation(s) to either
withdraw from STANAG 4559 participation or appoint a new STANAG 4559 representative who
will be able to fully participate.

ANNEX D TO
AEDP-5

(Edition 1)

D-2

3 Duties of Custodian/Chairman
The STANAG 4559 Custodian also serves as the chairman of all meetings of the configuration
management functions. The STANAG 4559 Custodian is responsible for all STANAG 4559
activity. Specific duties include, but are not limited to the following tasks.

• Tracks changes and provides "official" copy for promulgation

• Reports to the parent organization on status

• Chairs STANAG 4559 Custodial Support Team (CST) meetings

• Directs activity of STANAG 4559 Administrative Support Team (AST)

The Custodian is the only individual to receive tasking from and report to the parent organization
on STANAG 4559. This authority can be delegated to other members of the STANAG 4559
community, but responsibility for the tasking and reporting resides with the Custodian.

3.1 STANAG 4559 Custodial Support Team (4559 CST)
The Custodial Support Team decides on the changes to be made to STANAG 4559 and reports on
implementation matters.

3.1.1 STANAG 4559 Representatives

Representatives to the 4559 CST are appointed by the respective national representative to the
parent organization. Each NATO member nation can appoint a representative to the 4559 CST by
providing the name, organization, address, telephone and facsimile numbers, and electronic mail
address of their 4559 CST member to the STANAG 4559 Custodian. (The STANAG 4559
Custodian will document the members of the 4559 CST and provide the information to the
NATO Secretary for recording in the parent organization decision sheet.) The national
representative to the 4559 CST can be from government or industry as chosen by the national
representative to the parent organization. The national representative to the 4559 CST is the
official spokesman for all participants from that nation.

3.1.2 National Representative Procedures

Each national representative shall define procedures for establishing the respective national
position on proposed changes. These procedures can use whatever process is appropriate to that
nation, but ultimately the national representative will voice the official national position to the
4559 CST.

The authority of the national representative can be delegated to another individual from that
nation in absence of the national representative. The delegation shall be in writing to the
Custodian/chairman prior to the start of the meeting at which the delegation of authority is
effective. The substitute representative shall have all authority and responsibility of the regular
representative.

ANNEX D TO
AEDP-5

(Edition 1)

D-3

3.1.3 National Experts

Other individuals from nations with representatives may participate at the discretion of national
representatives or the Custodian/chairman. The intent of having additional personnel participate
is to provide technical, operational, or procedural expertise that may not be resident with the
representatives and to allow participation by those who are developing systems using STANAG
4559.

3.1.4 Liaison Organizations

Liaison organizations that utilize and are impacted by or identify modifications to STANAG 4559
e.g. Multi-sensor Airborne/ground Joint ISR Interoperability Coalition (MAJIIC) and the Digital
Geospatial Information Working Group (DGIWG) are viewed as valuable participants to the
STANAG 4559 CST and are, in result, provided notification of meeting agendas and
announcements and will on occasion be invited to share common meeting times and venues for
cross-exchange of information and common areas of standardization.

3.1.5 Non-NATO Nations Participation

As the STANAG 4559 is an openly available standard, individuals from non-NATO nations may
participate in 4559 CST meetings at the request of the Custodian, so that they may explain/defend
changes proposed by the individual or non-NATO nation or to coordinate implementation of the
STANAG for interoperability purposes.

3.2 STANAG 4559 Administrative Support Team (4559 AST)
The STANAG 4559 Administrative Support Team provides the necessary planning and
maintenance activities to manage STANAG 4559 and related documents. The members of the
4559 AST are selected by the Custodian based on tasking, resources. Membership is sustained
continuously by the discretion of the Custodian. The members of the 4559 AST will perform the
following functions.

• Prepare for meetings by identifying locations and dates for the meetings, preparing
announcements, coordinating security clearances, providing guidance to meeting hosts,
and preparing presentation materials and handouts.

• Presentation of recommended changes during the meetings.

• Track recommended changes submitted through 4559 CST channels.

• Prepare minutes of all meetings.

• Prepare revisions for distribution to NATO Secretary and members.

• Perform the configuration management STANAG 4559, including maintaining the
current version of document.

• Disseminate all proposed changes to the 4559 CST as they are received and logged.

3.3 Responsibilities of the NATO Secretary
The NATO Secretary is responsible for maintaining the configuration management of the NATO
Standardization Authority web pages on which NIIA and STANAG information is posted. The

ANNEX D TO
AEDP-5

(Edition 1)

D-4

Secretary will update the postings for past and upcoming meetings based on information provided
by the Custodian. Once changes to STANAG 4559 are approved, the Secretary will post the
revision to the appropriate NATO web pages within 45 days of the meeting, unless other
arrangements are agreed during the 4559 CST meeting.

3.4 Special Teams
The Custodian shall have the authority to convene special teams to examine major technical
issues that are beyond the scope of routine change proposal activity. Technical issues of this type
can include major changes to the format or development of future strategies for image
interoperability. The Custodian can chair the special team or select another member of the NSIF
community to chair the special team and report on its progress. The members of the team will be
appointed by the Custodian based on recommendations from the national representatives. The
Custodian will identify any special teams, including the members, tasking, planned schedule, and
expected products, to the parent organization.

4 Change Management
In recognition of the evolution of technologies being applied to web services for discovery and
retrieval of data, and in appreciation of interoperability tests that validate the content of STANAG
4559 and its role within the NATO ISR Interoperability Architecture, the STANAG 4559 CST
appreciates active application and assessment of the 4559 STANAG as a part of the NIIA. The
STANAG 4559 CST anticipates and encourages the submission of questions to the existing
content that may cause corrective changes or valuable amendments to the 4559 STANAG.
Changes to both STANAG 4559 and AEDP-5 will be received and adjudicated in the described
manner, and will yield Amendments to STANAG 4559 and Changes to AEDP-5.

4.1 Submitters of Changes and Amendments
All representatives to STANAG 4559 Custodial Support Team can submit change requests that
amend the content or structure of STANAG 4559, or that change the AEDP-5 or NSILI data
models that should be documented. Other personnel requesting changes shall submit their
requests through the respective National representatives. For persons from NATO nations without
formal representatives on the STANAG 4559 CST, the change requests shall be submitted
through their respective parent organization representative. National Representatives will evaluate
proposed changes for compatibility to National needs and intended implementations of the
STANAG.

Individuals from non-NATO nations may submit change proposals directly to the Custodian. In
addition to the information contained in the standard change request form (Appendix A), the
submission shall include a cover letter which clearly identifies the name, title, organization, and
contact information of the submitter, as well as a statement as to whether the submission is in
response to a national government requirement. If the change supports a national government
requirement, the requirement should be identified, and an endorsement included which is signed
by an appropriate government representative. In all cases, the submitter should be prepared to
attend 4559 CST meetings to explain and/or defend the proposed change.

ANNEX D TO
AEDP-5

(Edition 1)

D-5

4.2 Change Request Format
All change requests shall use a standard format, either by completing the form in ANNEX D of
the document or by sending electronic mail containing the same information and order as the
form. The paper form can be submitted either through the mail or by telefax. The change request
is submitted to the appropriate national representative, who then endorses the change and
forwards it to the Custodian. The Custodian provides the change request to the 4559 AST for
logging and dissemination for discussion and review.

4.3 Class I and Class II Changes
All change requests to the STANAG shall identify the proposed change as either Class I
(amendments of substance) or Class II (editorial amendments). Class I changes modify the
functionality of standard (requires s/w change to comply). This includes changes to data models,
metadata fields, changes to provide further capabilities or data views to the STANAG, or
additions/deletions of metadata fields and approved values. Class I changes are those identified as
changes of substance in paragraph 212.2. of AAP-3(H). Class II changes are for administrative
or editorial revisions or to clarify application of the STANAG. These changes are those identified
as editorial amendments in paragraph 212.3 of AAP-3(H). Class II changes also includes data
models which are documented as Errata Sheets during the final stages of development.

New data management structures to expand the capabilities of STANAG 4559 will also be
managed by the 4559 CST. Change proposals will be submitted through the same channels as
changes to the basic text. Proposed data manager expansions and data models will be forwarded
to all national representatives for review and discussed during the 4559 CST meetings.

4.3.1 Approved Changes

Final configuration decisions are voted only by the national representatives. Class I (amendments
of substance) changes require unanimous consent of national representatives (or designated
alternates) in attendance and voting. Class II (editorial amendments) changes require a majority
vote of national representatives in attendance and voting. The Custodian has the authority to
adjudicate non-decisions.

4.3.2 Errata Sheets

Approved changes will be posted as Errata Sheets to the STANAG or AEDP until a new
document edition is created to absorb the text. The custodian will notify National representatives
that the change will be adopted. The Errata Sheet will be posted on the internet with the
promulgated edition of the STANAG to be updated and reposted on appropriate NATO Web
pages including http://www.nato.int/docu/standard.htm. The Errata Sheet will be updated and
reposted with new changes by the NSA Secretary until the CSTs support submission of an
amendment or new edition of the STANAG. Changes will be incorporated into the next
ratification draft, either an amendment or new edition of the STANAG.

ANNEX D TO
AEDP-5

(Edition 1)

D-6

4.3.3 Change Matrix

Compiled changes will be documented and decisions recorded using the Change Matrix shown in
Appendix 2 of this Annex. Notification of an updated Errata Sheet will be provided to the
national representatives through STANAG 4559 Custodial Support Team meetings and through
status reports to the All Source Intelligence Integration Sub Group.

4.4 No Decision Situations
The custodian will direct discussion of each agenda item and will attempt to resolve any areas of
disagreement. Every effort will be made to determine the disposition of all proposed changes
during the meeting. However, a decision may be deferred if the Custodian determines that
additional investigation/review is required. In such cases, the Custodian will assign responsibility
for additional study/review.

If after appropriate time to investigate and review a proposed change a decision cannot be arrived
at amongst the National representatives the CST will prepare a memo for record outlining the
proposed change and the various National positions. The Custodian will provide this memo for
record to the ASIISG when referring the matter to the ASIISG where disposition of the change
will be addressed. The Custodian is granted the ultimate authority to adjudicate any undecided
situations.

5 Meeting Procedures

5.1 Meeting Constraints
All meetings will be announced with a minimum of 60 days notice. All meetings will be
conducted in English. Those nations requiring the materials in different languages are responsible
for translating the materials. Attendees to the meetings should be proficient enough in English to
contribute to the meeting in English.

5.2 Meeting Participation
National representatives may invite other individuals from their nations to participate during the
meeting. These additional participants may be government or contractor personnel. The intent of
having additional personnel participate is to provide technical, operational, or procedural
expertise that may not be resident with the National representatives and to allow participation by
those who are developing systems using STANAG 4559.

5.3 Meeting Documentation
Minutes of all meetings will be distributed within 14 days of the completion of the meeting. The
minutes will include a record to document approved and disapproved changes, identify the status
of all outstanding changes, and identify issues to be taken forward to
ASIISG.

ANNEX D TO
AEDP-5

(Edition 1)

D-7

Figure D-1: Change Management Process

No Yes

No

Yes

Custodian logs-in
proposed change

Custodian determines
disposition

Significant
change?

Urgent
change?

Custodian compiles and
distributes to

National POCs

POCs develop nation’s
position on proposed

change

POCs forward
nation’s position to

Custodian

POCs distribute
within nation

Yes

Custodian distributes
urgent changes to

National POCs and
Participating

Implementation

POCs review change
proposal

POC
supports
change

No reply
necessary

POC forwards dissenting
opinion to Custodian

No

Originator submits change
proposal to National POC

National POC
reviews change

National POC forwards
proposed change to

Custodian

National POC returns
change proposal to

originator

POC concurs

POC non-concurs

ANNEX D TO
AEDP-5

(Edition 1)

D-8

Figure D-1: Change Management Process
(contd)

Custodian incorporates
agreed changes into
amendment or new

edition

JCG-ISR Secretary
distributes to
Nations for
ratification

Nations ratify
amendment or new

edition

JCG-ISR Secretary
forwards to NSA

Custodian
submits to

ASIISG for

Amendment or new
edition approved by
ASIISG/JCG-ISR

NSA promulgates amendment
or new edition

Custodian
distributes change

for action

Nations
agree?

Dissent
Received?

No Yes

Custodian calls
meeting of National

POCs

POCS
review/discuss

changes

POCs agree POCs
disagree

Yes No

APPENDIX 1 TO

ANNEX D TO
AEDP-5

(Edition 1)

1-D-1

APPENDIX 1 OF ANNEX D - CHANGE PROPOSAL
DATA

When modifications or amendments to this AEDP-5 or STANAG 4559 - NSILI are
necessary, the modification or amendment and a rationalization must be documented and
provided to the STANAG 4559 Custodian, including the following metadata.

1. STANAG Number:

2. Version/Edition Number:

3. Document Date:

4. Document Title:

5. Proposed Change to: (Section, Paragraph, Line, Page)

6. Current Wording:

7. Proposed Wording:

8. Reason/Rationale:

9. Recommended Significance of the Change:

10. Priority Routine/Urgent:

11. Originator’s Name:

12. Originator’s Organization:

13. Originator’s Mailing Address:

14. Originator’s Telephone Number:

15. Originator’s Telefax Number:

16. Originator’s E-Mail Address:

17. Date Submitted:

a. National Body Review Deadline:

b. Custodian Disposition Posted:

c. ASIISG Decision Sheet Posted:

Note: Please spell out all abbreviations and acronyms.

APPENDIX 2 TO

ANNEX D TO
AEDP-5

(Edition 1)

2-D-1

APPENDIX 2 OF ANNEX D - CHANGE PROPOSAL FORM

Proposed Changes to NATO STANAG, 4559
 Date of Issue: _____

Change
Number

Disposition
I –
Implemented
NI – Not
Implemented
IC –
Implemented
 with Change

Submit
ted by
(Initials
of
Origina
tor)

Type of
Change
A –
Administrative
T – Technical
(Add, Delete,
Change,
Comment or
Question

Doc
Location
Annex/Para
graph/
Figure /
Table
Number)
Page

Current
Wording
/
Deleted
Wording

Recommended
Wording /
Added
Wording

Rationale
for
Change

Question /
Comment /
Clarification
/ Action

Figure D2-1: Sample change request form

ANNEX E TO

AEDP-5
(Edition 1)

E-1

ANNEX E – DATA MODELS AND METADATA
New data models will be required as NSILI implementations are adapted to the suite of ISR
data formats. The results of the Metadata Harmonization Technical Support Team will
provide the attributes that are required to describe a data type. As an implementation begins to
provide for a particular dataset, the model should be developed in coordination with the
NSILI CST, the Custodian of the dataset, the Metadata Harmonization TST, and finally the
ASIISG. Data models will provide an xml schema. Upon approval by the NSILI CST and
appropriate development bodies, the Custodian will incorporate the model into the STANAG
4559 Errata Sheet where it will be posted with the STANAG on the NAFAG webpages. At
the time of republication of the STANAG, the data model change pages will be incorporated
as an annex or appendix to Annex E.

ANNEX F TO

AEDP-5
(Edition 1)

F-1

ANNEX F – SAMPLE CODE AND EXAMPLES

1 Sample Code for Clients

package de.fraunhofer.iitb.IITBThinClient;

// import Statements with * for better reading
import GIAS.*;
import UCO.*;
import de.fraunhofer.iitb.IITBThinClient.util.DAGUtil;
import org.apache.commons.net.ftp.*;
import java.io.*;
import java.net.URL;
import java.util.*;
import org.omg.CORBA.IntHolder;
import org.omg.CORBA.ORB;

public class TestClient {

 private Library library = null;
 private CatalogMgr myCatMgr = null;
 private StandingQueryMgr mySQMgr = null;

 private HashMap<SubmitStandingQueryRequest, ResultHandler>
 ssqrToResultHandlerMap = new
 HashMap<SubmitStandingQueryRequest, ResultHandler>();

 private ORB orb = null;
 private Properties props = null;

 private boolean cancelling = false;

 private Timer timer = null;
 private PollingTask pollingTask = null;
 private CancelRequestTask cancelRequestTask = null;

 /**
 * convenience method, performs all initializations
 * @param iorUrl the FTP URL of the server IOR file
 ***/
 public void init(String iorUrl) {

 debug("initializing properties...");
 initProperties();

ANNEX F TO

AEDP-5
(Edition 1)

F-2

 debug("initializing connection to server...");
 initLibrary(iorUrl);

 debug("initializing managers...");
 initManagers();
 }

 /***
 * initializes the client properties
 **/
 private void initProperties() {

 props = new Properties();
 String propFile = System.getProperty("CLIENT_HOME") +
 "/etc/NsiliClient.properties";
 debug("propFile = "+propFile);
 try {
 FileInputStream fis = new FileInputStream(propFile);
 props.load(fis);
 fis.close();
 } catch (Exception e) {
 debug("Properties error:");
 e.printStackTrace();
 System.exit(0);
 }
 }

 /***
 * initializes the connection to the server and the library
 ***/
 private void initLibrary(String iorUrl) {

 // --
 // establish an FTP connection and get the IOR file
 // --
 debug("FTP URL of server IOR: "+iorUrl);
 if (!iorUrl.startsWith("ftp://")) {
 return;
 }

 String localPath = null;
 try {
 URL url = new URL(iorUrl);
 String host = url.getHost();
 debug("host="+host);
 String userInfo = url.getUserInfo();
 debug("userInfo="+userInfo);

 String [] sh = userInfo.split(":");
 String user = sh[0];
 String passwd = sh[1];

 FTPClient client = new FTPClient();
 client.connect(host);
 client.enterLocalPassiveMode();

 int reply = client.getReplyCode();

ANNEX F TO

AEDP-5
(Edition 1)

F-3

 if(!FTPReply.isPositiveCompletion(reply)) {
 client.disconnect();
 return;
 }

 client.login(user, passwd);
 client.setFileType(FTP.ASCII_FILE_TYPE);

 File file = new File(url.getFile());
 String remotePath = url.getFile();
 if (remotePath.startsWith("/")) {
 remotePath = remotePath.substring(1);
 }

 // insert the local path, where you want to download
 // the IOR file to
 localPath = props.getProperty("local.path");
 if (!localPath.endsWith("/")) {
 localPath = localPath + "/";
 }
 localPath = localPath + file.getName();
 debug("localPath="+localPath);
 FileOutputStream fos =
 new FileOutputStream(localPath, false);
 client.retrieveFile(remotePath, fos);

 client.logout();
 client.disconnect();
 } catch (Exception e) {
 debug("FTP error:");
 e.printStackTrace();
 System.exit(0);
 }

 // --
 // initialize CORBA ORB
 // --
 try {
 orb = ORB.init(new String[0], new Properties());
 } catch (Exception e) {
 debug("ORB error:");
 e.printStackTrace();
 System.exit(0);
 }

 // --
 // get the Library object
 // --
 String server_iorstring = null;
 try {
 FileReader fr = new FileReader(localPath);
 LineNumberReader lnr = new LineNumberReader(fr);
 server_iorstring = lnr.readLine();
 debug("server_iorstring="+server_iorstring);
 library =
 (Library) orb.string_to_object(server_iorstring);

 } catch (Exception e) {

ANNEX F TO

AEDP-5
(Edition 1)

F-4

 debug("Library error:");
 e.printStackTrace();
 System.exit(0);
 }
 }

 /***
 * initializes the necessary managers
 ***/
 private void initManagers() {

 //---
 // create the AccessCriteria
 // --
 AccessCriteria ac = new AccessCriteria("", "", "");

 // --
 // get the catalog manager
 // --
 try {
 LibraryManager libMgr =
 library.get_manager("CatalogMgr", ac);

 if (libMgr == null) {
 return;
 }

 myCatMgr = CatalogMgrHelper.narrow(libMgr);

 } catch (Exception e) {
 debug("managers error:");
 e.printStackTrace();
 System.exit(0);
 }

 // --
 // get the standing query manager
 // --
 try {
 LibraryManager libMgr =
 library.get_manager("StandingQueryMgr", ac);

 if (libMgr == null) {
 return;
 }

 mySQMgr = StandingQueryMgrHelper.narrow(libMgr);

 } catch (Exception e) {
 debug("managers error:");
 e.printStackTrace();
 System.exit(0);
 }
 }

 /***
 * gets all search results from the server with the given
 * query, view and attributes

ANNEX F TO

AEDP-5
(Edition 1)

F-5

 * @param queryString a BQS query String
 * @param view the datamodel to be queried
 * @param resultAttributes a String array with the desired
 * result attributes
 **/
 public ArrayList<HashMap> getProducts(String queryString,
 String view, String[] resultAttributes) {

 ArrayList<HashMap> results = new ArrayList<HashMap>();

 // --
 // create the BQS query
 // --
 Query query = new Query();
 query.view = view;
 query.bqs_query = queryString;

 // --
 // test, how many results are available
 // --
 int availableHits = getHitCount(query);
 debug("hitCount="+availableHits);

 // --
 // define, by which attributes the results should be sorted
 // --
 String sortAttr = props.getProperty("default.sortattribute");
 SortAttribute[] sortAttributes = { new SortAttribute(
 sortAttr,
 Polarity.from_int(Polarity._ASCENDING))
 };

 // ---
 // define other properties; this parameter is not used
 // ---
 NameValue[] props = new NameValue[0];

 // ---
 // create a SubmitQueryRequest
 // ---
 SubmitQueryRequest sqr = null;
 try {
 sqr = myCatMgr.submit_query(query,
 resultAttributes,
 sortAttributes,
 props);
 } catch (Exception e) {
 debug("request error:");
 e.printStackTrace();
 System.exit(0);
 }

 // ---
 // get the results for the request
 // ---
 DAGListHolder myDagListHolder = new DAGListHolder();
 try {

ANNEX F TO

AEDP-5
(Edition 1)

F-6

 sqr.complete_DAG_results(myDagListHolder);
 int noHits = myDagListHolder.value.length;
 while (noHits > 0) {
 results.addAll(
 DAGUtil.decodeDAGList(myDagListHolder, orb));
 myDagListHolder = new DAGListHolder();
 if (noHits < availableHits) {
 sqr.complete_DAG_results(myDagListHolder);
 noHits = myDagListHolder.value.length;
 } else {
 noHits = 0;
 }
 }
 } catch (Exception e) {
 debug("complete results error:");
 e.printStackTrace();
 System.exit(0);
 }
 return results;
 }

 /**
 * starts the subscription using the polling mechanism; the
 * results are passed to the handleResults() method of the
 * given ResultHandler
 **/
 public void startStandingQuery(String queryString,
 String queryView, String[] resultAttributes,
 ResultHandler handler) {

 // --
 // create the BQS query
 // --
 Query query = new Query();
 query.view = queryView;
 query.bqs_query = queryString;

 // --
 // test, how many results are available
 // --
 int availableHits = getHitCount(query);
 debug("hitCount="+availableHits);

 // --
 // define, by which attributes the results should be sorted
 // --
 String sortAttr = props.getProperty("default.sortattribute");
 SortAttribute[] sortAttributes = {
 new SortAttribute(sortAttr,
 Polarity.from_int(Polarity._ASCENDING))
 };

 // --
 // define the lifetime and the frequency of the subscription
 // --
 String duration = props.getProperty("default.duration");
 long delayLong = Long.parseLong(duration)*1000;

ANNEX F TO

AEDP-5
(Edition 1)

F-7

 Calendar startCalend =
 Calendar.getInstance(TimeZone.getTimeZone("GMT"));
 Calendar endCalend =
 Calendar.getInstance(TimeZone.getTimeZone("GMT"));
 endCalend.setTimeInMillis(
 startCalend.getTimeInMillis()+delayLong);

 AbsTime startTime = DAGUtil.makeAbsTime(startCalend);
 AbsTime endTime = DAGUtil.makeAbsTime(endCalend);

 LifeEvent startEvent = new LifeEvent();
 startEvent.at(startTime);

 LifeEvent endEvent = new LifeEvent();
 endEvent.at(endTime);

 LifeEvent frequency = new LifeEvent();
 String freqString = props.getProperty("default.frequency");
 float secs = Float.parseFloat(freqString);
 Time delay = new Time((short)0, (short)0, secs);
 frequency.rt(delay);
 LifeEvent[] freq = {frequency};
 QueryLifeSpan lifeSpan =
 new QueryLifeSpan(startEvent, endEvent, freq);

 // --
 // define other properties; this parameter is not used
 // --
 NameValue[] props = new NameValue[0];

 // --
 // create a SubmitStandingQueryRequest
 // --
 SubmitStandingQueryRequest ssqr = null;
 try {
 ssqr = mySQMgr.submit_standing_query(query,
 resultAttributes,
 sortAttributes,
 lifeSpan,
 props);
 ssqr.set_user_info("Fraunhofer IITB Thin Client");
 } catch (Exception e) {
 debug("submit standing query request error:");
 e.printStackTrace();
 }
 ssqrToResultHandlerMap.put(ssqr, handler);

 // --
 // start the polling
 // --
 timer = new Timer();
 debug("start polling...");
 pollingTask = new PollingTask(ssqr, endCalend);
 timer.schedule(pollingTask, startCalend.getTime());
 debug("startCalend: "+startCalend.getTime().toString());

 cancelRequestTask = new CancelRequestTask(null, pollingTask);
 timer.schedule(cancelRequestTask, endCalend.getTime());

ANNEX F TO

AEDP-5
(Edition 1)

F-8

 debug("endCalend: "+endCalend.getTime().toString());
 }

 /***
 * this method is only used internally; it is called when the
 * server sends a callback or the polling interval has passed;
 * do not use this method directly!
 ***/
 protected void performStandingQuery(
 SubmitStandingQueryRequest ssqr) {

 try {
 DAGListHolder myDagListHolder = new DAGListHolder();
 State requestState = null;
 boolean requestKilled = false;
 try {
 requestState = ssqr.get_status().completion_state;
 } catch (org.omg.CORBA.OBJECT_NOT_EXIST e) {
 requestKilled = true;
 }
 if (requestKilled || (requestState != null &&
 (requestState.equals(State.ABORTED) ||
 requestState.equals(State.CANCELED)))) {
 cancelRequestTask.run();
 return;
 }
 State state = ssqr.complete_DAG_results(myDagListHolder);
 ArrayList<HashMap> results =
 DAGUtil.decodeDAGList(myDagListHolder, orb);
 ResultHandler handler = ssqrToResultHandlerMap.get(ssqr);
 if(handler != null) {
 handler.handleResults(results);
 }
 } catch (Exception e) {
 debug("standing query error:");
 e.printStackTrace();
 System.exit(0);
 }
 }

 /**
 * gets the number of results for a given query
 ***/
 private int getHitCount(Query query) {
 IntHolder hitCount = new IntHolder();
 HitCountRequest hitRequest = null;
 State hitState = null;

 try {
 NameValue[] nv = new NameValue[0];

 // create a HitCountRequest
 hitRequest = myCatMgr.hit_count(query, nv);

 // get the result for this request
 hitState = hitRequest.complete(hitCount);

 } catch (Exception e) {

ANNEX F TO

AEDP-5
(Edition 1)

F-9

 debug("getHitCount error:");
 e.printStackTrace();
 System.exit(0);
 }
 return hitCount.value;
 }

 /**
 * simple debug method
 ***/
 private void debug(String s) {
 System.out.println("\tTestClient : "+s);
 }

 /**
 * inner class implementing a timer task for canceling the
 * request; in the run() method the PollingTask is cancelled
 * (if not null), the Request is cancelled and removed from
 * the ssqrToResultHandlerMap
 ***/
 private class CancelRequestTask extends TimerTask {

 PollingTask pollingTask = null;

 public CancelRequestTask(String callbackId,
 PollingTask pollingTask) {
 this.callbackId = callbackId;
 this.pollingTask = pollingTask;
 }

 public void run() {

 if (cancelling) {
 return;
 } else {
 cancelling = true;
 }

 debug("CancelRequestTask.run()...");
 if (pollingTask != null) {
 pollingTask.cancel();
 debug("...end polling");
 }

 SubmitStandingQueryRequest ssqr = pollingTask.getSsqr();
 if (ssqr != null) {
 try {
 ssqr.cancel();
 RequestManager rm = ssqr.get_request_manager();
 rm.delete_request(ssqr);
 ssqrToResultHandlerMap.remove(ssqr);
 ssqr = null;
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 pollingTask = null;
 timer.purge();

ANNEX F TO

AEDP-5
(Edition 1)

F-10

 timer.cancel();
 timer = null;
 }
 }

 /***
 * inner class implementing the polling
 ***/
 private class PollingTask extends TimerTask {

 private SubmitStandingQueryRequest ssqr = null;
 private Calendar endTime = null;

 public PollingTask(SubmitStandingQueryRequest ssqr,
 Calendar endTime) {
 this.ssqr = ssqr;
 this.endTime = endTime;
 }

 public SubmitStandingQueryRequest getSsqr() {
 return ssqr;
 }

 public void run() {
 debug("PollingTask.run()...");
 while (System.currentTimeMillis() <
 endTime.getTimeInMillis()) {
 performStandingQuery(ssqr);
 }
 }
 }

 public static void main(String[] args) {

 System.out.println("\n---------begin main-------------");
 TestClient client = new TestClient();

 System.out.println("\n---------initializing-------------");
 client.init(
 "ftp://ftp:ftp@192.168.207.25/pub/ior/NSIL_Libray.ior");

 String queryView = "NSIL_CORE";
 String queryString = "FTITLE LIKE 'sampleImage'";
 String[] resultAttributes = {
 "DAID",
 "DARFI",
 "FDT",
 "FTITLE",
 "ICORDS"
 };

 // start a simple query
 System.out.println("\n---------simple query-------------");
 ArrayList<HashMap> results =
 client.getProducts(queryString,
 queryView,
 resultAttributes);
 // do something with the results

ANNEX F TO

AEDP-5
(Edition 1)

F-11

 // start a standing query
 System.out.println("\n--------standing query-------------");
 client.startStandingQuery(queryString,
 queryView,
 resultAttributes,
 new ResultHandlerImpl());
 }
}

Figure F-1: Sample Code for Clients

ANNEX F TO

AEDP-5
(Edition 1)

F-12

2 Sample Code for Servers

Please contact the custodian for reference sample code.

ANNEX G TO

AEDP-5
(Edition 1)

G-1

ANNEX G – INTERNET WEBSITE REFERENCES
1. MTR 99W: MITRE TECHNICAL REPORT

2. IEEE: Technology of Object-Oriented Languages and Systems September 22 -
25, 1998 Beijing, China

3. Implementation of a Geospatial Imagery Digital Library Using Java and
CORBA p. 280 P.D. Coddington, K.A. Hawick, K.E. Kerry, J.A. Mathew, A.J.
Silis D.L. Webb, P.J. Whitbread, C.G. Irving, M.W. Grigg, R. Jana, K. Tang

4. OMG Organisation link
http://www.omg.org/technology/corba/corbadownloads.htm

5. OMG Security Standards Specifications include: ATLAS, Common Secure
Interoperability, Version 2 (CSIv2), CORBA Security Service, Version 1.8, and
Resource Access Decision (RAD), Version 1.0 and are described at:
http://www.omg.org/technology/documents/formal/omg_security.htm#CSIv2.

6. JacORB http://www.inf.fu-berlin.de/~brose/jacorb

7. MICO http://www.mico.org/

8. ORBacus http://www.iona.com/products/orbacus_home.htm

9. Java, idlj, http://java.sun.com/j2se/1.4.2/,
http://java.sun.com/j2se/1.4.2/docs/guide/idl/index.html

10. VBOrb http://home.t-online.de/home/Martin.Both/vborb.html

11. VisiBroker http://www.borland.com/visibroker/

12. RFC1738 source code http://java.sun.com/j2se/

13. SUN-JDK-ORB http://java.sun.com/j2se/1.4.2/docs/api/org/omg/CORBA/doc-
files/compliance.html

14.

ANNEX H TO

AEDP-5
(Edition 1)

H-1

ANNEX H – GLOSSARY OF TERMS

1 Terms and Definitions
The following terms and definitions are fundamental to the scope and interoperable
implementation of the STANAG 4559 and this AEDP-5. The STANAG 4559 has been
developed using several paradigms for access and interaction. The terminology developed has
been utilized to describe functionally the role the interface has with the rest of the NATO ISR
Interoperability Architecture and other applications. Terms have also been aligned with the
ISO TC211 Terms database which is freely available from ISO Technical Committee 211 at
http://www.isotc211.org/TC211_Multi-Lingual_Glossary-2007-10-23_Published.xls

Term Definition

Client software component that can invoke an operation from a server (ISO Standard
19118)

Library The centralized access point for a client to gain functional parts of a system. In
password authenticating systems such as the US Image Product Library, this
centralized access point allows or denies functional parts. In the product library,
there is only one Library Object shared among all users.

Manager The functional parts of the product library. Managers can be implemented for
activities such as query submission and product ordering. In a STANAG 4559
implementation it is possible to share the Managers between all users of the
system because no username/password protection is specified.

Requests The mechanism for completing, tracking, and canceling activities requested of the
library. When any activity is performed by a client, the server will issue a request
to the client. Three different models of waiting can be utilized by the client to
determine if a server activity has completed. These models allow for a wide range
of flexibility in how the client is developed. The models are: polling completion,
interrupt completion, and blocked completion.

Server a particular instance of a service (ISO 19128)

Service distinct part of the functionality that is provided by an entity through interfaces
(ISO/IEC TR 14252 (Adapted from))

2 Acronyms and Abbreviations
The following acronyms are used for the purpose of this agreement.

Acronym or
Abbreviation Definition

AAP Allied Administrative Publication
AEDP NATO Allied Engineering Documentation Publication
ASIISG All Source Intelligence Integration Sub Group, the ISRIWG previously

served integration of only imagery STANAGs
BICES/LOCE Battlefield Information Collection and Exploitation Systems / Linked

Ops-Intel Center Europe

ANNEX H TO

AEDP-5
(Edition 1)

H-2

Acronym or
Abbreviation Definition

Bi-SC Bi-Strategic Commands for (NATO) Automated Information Systems.
The Bi-SC AIS Core Capability Geographic Services project is aimed at
providing NATO’s Strategic and Subordinate Commands with
Geographic Services, implemented through the Bi-SC AIS Core Services.

BNF Backus-Naur Form

BQS Boolean Query syntax
C4I Command Control, Communications, Computers and Intelligence
CAESAR Coalition Aerial Surveillance and Reconnaissance
CCS Common coordinate system as used in STANAG 4545
COI Community of Interest
CORBA Common Object Request Broker Architecture
CSD (MAJIIC) Coalition Shared Data server / Database
CST Custodial Support Team
D&R IDM Discovery and Retrieval Interface Design Model, based on NSG
DAG Directed Acyclic Graph
DGIWG Digital Geospatial Information Working Group
FTP, ftp File transfer protocol
GEOINT Geospatial Intelligence
GIAS Geospatial and Imagery Access Services specification
IDD Interface Design Document
IDL Interface Design Language
IEEE Institute of Electrical and Electronics Engineers, Inc
IEG Information Exchange Gateway
IIOP Internet Inter-ORB Protocol
IOR Initial Object Reference
IPIWG (NATO) Intelligence Project Implementation Working Group
ISO International Organization for Standardization
ISR Intelligence, Surveillance and Reconnaissance
ISRPL ISR Product Library
JCG-ISR Joint Capabilities Group – Intelligence Surveillance and Reconnaissance,

formerly JISRCG
JISRCG Joint ISR Capability Group
JWID Joint Warrior Interoperability demonstration
LAN Local area network
MAJIIC Multi-sensor Airborne/ground Joint ISR Interoperability Coalition
NAFAG NATO Air Force Armaments Group
NAT Network Address Translator
NC3TA NATO Command Control and Communications Technical Architecture

ANNEX H TO

AEDP-5
(Edition 1)

H-3

Acronym or
Abbreviation Definition

NGA (USA) National Geospatial-Intelligence Agency
NIIA NATO ISR Interoperability Architecture: AEDP-2
NSG (USA) National System for Geospatial-intelligence
NSILI NATO Standard ISR Library Interface
OMG Object Management Group
ORB Object Request Broker
POA Portable Object Adaptor
RFI Request for information
SQL Syntax query language
STANAG NATO Standardization Agreement

STGP Shared Tactical Ground Picture
TRE (STANAG 4545) Tagged Record Extension
UCOS USIGS Common Object Specification
VM Virtual machine
WAN Wide area network

