
N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

Geospatial and Imagery Access

Services Specification

National Imagery and Mapping Agency

United States Imagery and Geospatial Information Service

Version 3.5.1

6 August 2001

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

i

Acknowledgments
Many individuals and organizations provided support and technical contributions to this work, Individuals
from numerous government agencies, contractor organizations and vendors contributed significantly to the
development of this specification. We acknowledge these contributions and hope that these individuals and
organizations will continue to actively support future updates and extensions. Thanks in advance.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

ii

Revision History
• Image Access Facility, Version 0.1 Straw 23 May 1995.

• Image Access Facility, Version 0.2 Tin 11 June 1995.

• Image Access Facility, Version 0.3 Aluminum 19 June 1995.

• Image Access Facility, Version 0.4 Copper - For USIS release June 21, 1995.

• Image Access Facility, Version 0.5 Nickel - Preliminary draft release for Image Access Working
Group (IAWG) June 29, 1995.

• Image Access Facility, Version 0.6 Iron - This release contained a relatively complete description of
semantics and sequencing for sample implementation prototypers. July 12, 1995.

• Image Access Facility, Version 0.7 Silver - This release addressed comments received. September 6,
1995.

• Image Access Facility and Catalog Access Facility, Version 0.8 Gold - This release contained
extensions based upon the additional architecture mining. February 8, 1996.

• Image Access Facility and Catalog Access Facility, Version 0.85 Gold Interim - Update for release
and comment on March 22, 1996.

• Image Access Services Specification, Version 0.9 Platinum - Revisions based upon comments from
Core Team Working Group, April 24, 1996.

• Image Access Services Specification Version 1.0 - ICCB Configuration-controlled, pilot operational
specification for contractor and commercial prototyping and interoperability testing, June 20, 1996.

• Image Access Services Specification Version 1.1 -

• Revised to remove TBR’s and TBDs concerning the PNF and IDF. Released for comments
December 6, 1996

• Image Access Services Specification Version 1.1 -

• Approved by ICCB December 20, 1996.

• Name of document changed to Geospatial and Imagery Access Services Specification. Version
number set to 3.0 to reflect extensions and updates for inclusion of geospatial data and operations.

• Geospatial and Imagery Access Services Specification

• Version 3.0 - Released for NCCB submittal 22 July 1997

• Geospatial and Imagery Access Services Specification Version 3.1. Includes updates to incorporate
responses and comments from additional interface prototyping tests. Released for NCCB submittal
4 February 1998.

• Geospatial and Imagery Access Services Specification Version 3.2A. Released on 2 October for 24
November NCCB. Part of RFC N01-0085.

• Geospatial and Imagery Access Services Specification Version 3.3. Released on 9 November for 24
November NCCB. Part of RFC N01-0085. Incorporates mods resulting from review and UIP WG, 3-4
November 1998.

• Geospatial and Imagery Access Services Specification Version 3.3. Approved on 24 November at
NCCB. As part of RFC N01-0085. Approval date annotated to document.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

iii

• Geospatial and Imagery Access Services Specification Version 3.3. Approved on 22 June 1999 at
NCCB. As part of RFC N01-0114, E2.0 As Built Baseline. Approval date annotated to document.

• Geospatial and Imagery Access Services Specification Version 3.4. Draft released on 4 June as part
of RFC N01-0127 for E2.5 UIP Baseline Update. Additional mods incorporated on 5 August as part
of RFC Mod Package.

• Geospatial and Imagery Access Services Specification Version 3.4. Approved on 24 August 1999 at
NCCB. As part of RFC N01-0127, E2.5 Baseline. Approval date annotated to document.

• Geospatial and Imagery Access Services Specification Version 3.5. Final Draft released on 18
February 2000 as part of RFC N01-0148 for UIP Baseline Update for the NE028/NE022 era. Update
released on 18 February 2000 based on results of 19 January 2000 UIP/API Final Draft

• RFC N01-0148 withdrawn. GIAS Version 3.5. Final Draft re-released on 21 April 2000 as part of RFC
N01-0203 for UIP Baseline Update for NE049/NE028/NE022 effectivities.

• Geospatial and Imagery Access Services Specification Version 3.5. Final Release dated 26 June
2000. Approved by NCCB on 26 June 2000 as part of RFC N01-0203J.

• Geospatial and Imagery Access Services Specification Version 3.5.1 Final Release dated 6 August
2001. Approved by NCCB on 6 August 2001 as part of RFC N01-0268.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

iv

 Planned Releases
• Regular updates at approximately six-month intervals or as needed.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

v

Preface
This document defines common interfaces and datatypes that are expected to be used by many other United
States Imagery and Geospatial Information Service (USIGS) interface specifications. The intent of this
specification is to document the interfaces, datatypes and error conditions that are expected to most
commonly occur or be most broadly applicable across the USIGS architecture. The use of these common
definitions will support interoperability among the various interface specifications in the USIGS architecture.

This specification was prepared consistent with industry practices and is modeled after those being
prepared by the Object Management Group (OMG) industry consortium. This approach is also consistent
with guidelines and direction established by NIMA through its Architecture and Standards processes.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

vi

Table of Contents

1 OVERVIEW 1

1.1 Background 1

1.2 Overview 1

2. INTERFACE OVERVIEW 6

2.1. Overview 6

2.2. Data Types 7
2.2.1. USIGS Common Objects 7
2.2.2. GIAS Specific Data Types (j/NPS) 8
2.2.3. GIAS Simple Data Types (j/NPS) 25

2.3. Interfaces 32
2.3.1. Library (j/NPS) 32
2.3.2. LibraryManager 34
2.3.3. RequestManager (j/NPS) 36
2.3.4. AccessManager 39
2.3.5. OrderMgr 43
2.3.6. DataModelMgr 45
2.3.7. StandingQueryMgr 52
2.3.8. CreationMgr (j/NPS) 54
2.3.9. UpdateMgr 58
2.3.10. CatalogMgr 61
2.3.11. ProductMgr 63
2.3.12. IngestMgr 66
2.3.13. QueryOrderMgr 68
2.3.14. VideoMgr 70
2.3.15. Request (j/NPS) 70
2.3.16. CreateMetaDataRequest 74
2.3.17. SetAvailabilityRequest 75
2.3.18. GetRelatedFilesRequest 76
2.3.19. CreateRequest 76
2.3.20. UpdateRequest 77
2.3.21. SubmitQueryRequest 78
2.3.22. SubmitStandingQueryRequest 80
2.3.23. HitCountRequest 86
2.3.24. GetParametersRequest 87
2.3.25. IngestRequest 88
2.3.26. OrderRequest 89
2.3.27 SubmitQueryOrderRequest 89
2.3.28. CreateAssociationRequest 91

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

vii

2.3.29. UpdateByQueryRequest 92

2.4. Exceptions 93
2.4.1. Exception Model 93
2.4.2 InvalidInputParameter Exceptions (j/NPS) 93
2.4.3 ProcessingFault Exceptions (j/NPS) 100
2.4.4 SystemFault Exceptions (j/NPS) 100

3. CALLBACK (J/NPS) 101

3.1. Callback (j/NPS) 101
3.1.1. notify (j/NPS) 101
3.1.2. release (j/NPS) 102

4. BOOLEAN QUERY SYNTAX 103

4.1. Overview 103

4.2. BQS Design 103

4.3. BNF definition 103

4.4. Rules and Constraints 108
4.4.1. Operator Precedence 108
4.4.2. Units 109
4.4.3. Strings and Wildcards 109
4.4.4. BQS and UCOS/GIAS Types 109
4.4.5. Deriving attribute names from data model 113
4.4.6. Attribute Name Syntax Rule 113

APPENDIX A: GIAS IDL 114

APPENDIX B: CALLBACK IDL 154

APPENDIX C UML DIAGRAMS 155

APPENDIX D REFERENCE OMG STANDARD IDL 157

APPENDIX E CORBA STANDARD EXCEPTIONS 157

APPENDIX F ACRONYMS 159

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

viii

APPENDIX G: UML STATECHART DIAGRAMS 160

APPENDIX H: POINTS OF CONTACT 171

N0101-G UNCLASSIFIED 6 August 2001

1 Overview

1.1 Background
The Geospatial and Imagery Access Services (GIAS) specification defines the core interfaces of the United
States Imagery and Geospatial Service (USIGS) libraries for client access to geospatial information. USIGS is
a single and integrated system, which is evolving from multiple systems to support the Imagery and
Geospatial Community (IGC) in the US Government's acquisition and production of imagery, imagery
intelligence, and geospatial information. USIGS has a common information management framework that
enables sharing of data, services, and resources among IGC members and their consumers

The GIAS provides client access, which includes search, discovery, browsing, and retrieval of information
and its associated meta-data. Geospatial information is defined to include imagery and imagery-based
information, maps, charts and any other data that has a well-defined association with a point or area on the
Earth.

1.2 Overview
The GIAS interfaces are specified using the Object Management Group (OMG) Interface Definition
Language (IDL). IDL is a language-independent notation for specifying software interfaces. IDL can be
readily compiled into software interfaces for various programming languages including C, C++, Java, Ada95,
and Smalltalk.

To help the reader assimilate the GIAS specification, a series of figures are presented providing varying
levels of details concerning the GIAS interfaces structure and usage. At the highest level of abstraction, the
GIAS interfaces are partitioned into four activity categories: library; request managers; request objects; and
callback/product objects. Figure 1-1 shows how the GIAS interface is structured and what are its activity
categories.

N0101-G UNCLASSIFIED 6 August 2001

Library

Manager

Request

Manager
Selection

Request
SubmittalAncestor

Information

Ancestor
Information

Callback Products

Categories
of

Activities

Request
Manipulation/Retrieval

GIAS
Client

Polling Blocking

Figure 1-1 GIAS Interface Structural and Activity Models

Figure 1-2 is based on the notion that a GIAS client requires access to a Library, which is accessible through
the GIAS interfaces. The GIAS client interacts with the Library to select and request access to a manager of
a specific type. (“manager selection activity category”). Using the provided Manager the client can submit
requests for the Library to perform tasks (“request submittal activity category”). Each request submittal
returns a Request object. The GIAS client then uses the Request object to monitor progress on the task and
to retrieve the results. The Request object also provides a mechanism (a Callback) to allow a client to be
notified of the progress of the task. The GIAS client can also obtain information (“ ancestor information
activity category”) on a specific request or manager. This allows a GIAS client to determine for any Request,
the Manager that is managing it and for any Manager determine the Library(s) it services.

Figure 1-2 provides another view of the GIAS interface specification as a UML class diagram. This class
diagram represents a static GIAS interface structure which is partitioned by four abstract interface classes:
LibraryManager; AccessManager; RequestManager; and Request. The LibraryManager represents an
instance of the specific Library being accessed by the client for requesting products. In addition,
specializations of the abstract class LibraryManager provide access to search a Library catalog, query for
products in the Library, discover elements of a data model in use by the Library, and archive new products
into the Library.

The AccessManager provides operations for a client to “monitor” the status of a Library request for a
specific product. In addition, specializations of the abstract class AccessManager provide operations for
specific products or data sets such as: orders for products, retrieval of tiled products, determination of the
characteristics of a specific product or data set, bulk transfer of data from a Library, and video products
(N.B., this capability is currently not implemented).

N0101-G UNCLASSIFIED 6 August 2001

The RequestManager provides operations for requested products or data sets. The RequestManager
provides selector and modifier operations for a request instance, which is a specialization of the abstract
interface Request. The set of request instances is shown in Figure 1-2.

Access to request operations submitted by the client can be transmitted to the Library by polling the Library
requested object (i.e., asynchronous), blocking (i.e., synchronous) the client until the Library requested
object is available, or requesting a Callback event when Library requested object is available.

GetRelatedFilesRequest
(f rom GIAS)

<<Interface>>

Library
(f r o m G I A S)

<<Interface>>

DataModelMgr
(f rom GIAS)

<<Interface>>

OrderMgr
(f rom GIAS)

<<Interface>>

LibraryManager
(f rom GIAS)

<<Interface>>

AccessManager
(f rom GIAS)

<<Interface>>
RequestManager

(from GIAS)

<<Interface>>

ProductMgr
(f rom GIAS)

<<Interface>>

QueryOrderMgr
(f rom GIAS)

<<Interface>>

CreationMgr
(f rom GIAS)

<<Interface>>

IngestMgr
(f rom GIAS)

<<Interface>>
UpdateMgr

(from GIAS)

<<Interface>>

StandingQueryMgr
(f rom GIAS)

<<Interface>>

CatalogMgr
(from GIAS)

<<Interface>>

Request
(f rom GIAS)

<<Interface>>

SubmitQueryOrderRequest
(f rom GIAS)

<<Interface>>

SubmitStandingQueryRequest
(f rom GIAS)

<<Interface>>

OrderRequest
(from GIAS)

<<Interface>>

CreateMetaDataRequest
(f rom GIAS)

<<Interface>>

CreateRequest
(f rom GIAS)

<<Interface>>

GetParametersRequest
(f rom GIAS)

<<Interface>>

IngestRequest

(f r o m G I A S)

<<Interface>>

HitCountRequest
(f r o m G I A S)

<<Interface>>

SetAvailabilityRequest
(f rom GIAS)

<<Interface>>
UpdateRequest

(f rom GIAS)

<<Interface>> UpdateByQueryRequest

(f rom GIAS)

<<Interface>>

CreateAssociationRequest
(f rom GIAS)

<<Interface>>SubmitQueryRequest
(from GIAS)

<<Interface>>

Figure 1-2 UML Static Class Diagram of GIAS Interface Structure

N0101-G UNCLASSIFIED 6 August 2001

The following three sequence diagrams outline three scenarios for interactions between a client and GIAS
Requests: Blocking, Polling and Callback.

Figure 1-3 provides the sequence for blocking requests made by GIAS clients. The scenario is initiated by
the GIAS Client inquiring and obtaining a list of what types of Managers are available from the GIAS
Library. Upon receiving and evaluating the list, the GIAS Client selects a Manager type (SampleMgr) and
requests access to a Manager object of that type from the GIAS Library. The GIAS Client uses this Manager
to submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. The client
then calls “complete” on the Request and is blocked until all processing is completed.

Figure 1-4 provides the sequence for polling requests made by GIAS clients. The scenario is initiated by the
GIAS Client inquiring and obtaining a list of what types of Managers are available from the GIAS Library.
Upon receiving and evaluating the list, the GIAS Client selects a Manager type (SampleMgr) and requests
access to a Manager object of that type from the GIAS Library. The GIAS Client uses this Manager to
submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. The client
then calls “get_status” repeatedly until the status returns as COMPLETE. The client then calls “complete”
to complete the Request.

Figure 1-5 provides the sequence for “callback” requests made by GIAS clients. The scenario is initiated by
the GIAS Client inquiring and obtaining a list of what types of Managers are available from the GIAS
Library. Upon receiving and evaluating the list, the GIAS Client selects a Manager type (SampleMgr) and
requests access to a manager object of that type from the GIAS Library. The GIAS Client uses this Manager
to submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. In this
scenario, the GIAS Client is associated with a Callback object. It registers this Callback object with the
SampleRequest. When the SampleRequest completes, SampleRequest invokes “notify” on the Callback
object.

GIAS : Library SampleManager :
RequestManager

SampleRequest :
Request

Client

get_manager_types()

get_manager()

send_request()

complete()

Figure 1-3 UML Use Case Sequence Diagram for a GIAS Blocking Scenario

N0101-G UNCLASSIFIED 6 August 2001

GIAS : Library SampleManager :
RequestManager

SampleRequest :
Request

Client

get_manager_types()

get_manager()

send_request()

complete()

get_status()
repeat get_status()
until status=
COMPLETE

Figure 1-4 UML Use Case Sequence Diagram for a GIAS Polling Scenario

GIAS : Library SampleManager :
RequestManager

SampleRequest :
Request

 : CallbackClient

get_manager_types()

get_manager()

send_request()

complete()

notify()

register_callback()

Figure 1-5 UML Use Case Sequence Diagram for a GIAS Callback Scenario

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

6

2. Interface Overview

2.1. Overview
The GIAS specification defines, through the use of OMG IDL, the interfaces, data types and error
conditions that represent a geospatial information Library. A GIAS-based geospatial Library has interfaces
that allow a client to search and discover information (data sets/products) contained in the Library, inquire
about details of a particular data set/product and arrange for the delivery of the data set/product to another
location or to another system. Also provided are interfaces to allow a client to nominate information to be
included in the Library. There are also interfaces to allow Library-to-Library interchange of information as
well as interfaces that support management and control of the client-library interactions.

The GIAS specification does NOT define interfaces for functions such as: locating Libraries with specific
characteristics (this is the function of a Trading service), requests for the collection or acquisition of
information not in a Library (this is the function of a collection requirements system), management of the
underlying communication and other infrastructure or requests for processing of information not directly
related to the search or delivery of information (this is the function of the exploitation and production
systems).

The definitions and semantics associated with the elements of the GIAS specification are intended to be as
general and as broadly useful as possible. It is not intended to be a description of any single implementation
or system but is intended to allow great latitude in the design and implementation schemes for geospatial
Libraries. However, to ensure interoperability, all systems that must interoperate must make the same
interpretations concerning this general specification. A profile of the GIAS specification for the intended
community of use is a critical supplement to the GIAS specification itself. A profile is a formal
documentation of the specific interpretations, limits, and conventions chosen by the community of use. The
USIGS community will be producing profiles of the GIAS specification that document these factors.

The following sections detail the interfaces, data types and error conditions that compose the GIAS
interface definition.

All elements of the GIAS definition are contained in the GIAS module, which identifies and defines data
types, interfaces, operations, and exceptions.

The interfaces defined in GIAS use the exception model defined in USIGS Common Object Services (UCOS)
Specification. That specification defines a general purpose model which the GIAS specification extends by
defining a set of error condition identifiers (string constants) (see section 2.4 for these string constants). In
the interface definitions that follow, the GIAS-specific error conditions that an interface may return are
identified by 1) defining the set of UCOS general purpose exceptions that may be returned and 2) listing the
set of GIAS-specific error condition identifiers that may be returned inside one of these UCOS defined
general purpose exceptions.

module GIAS

{

.... all GIAS elements ...

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

7

};

2.2. Data Types
2.2.1. USIGS Common Objects

In order to support interoperability among the components of the USIGS architecture, the most common or
most broadly useful data types, interfaces, operations, and exceptions (i.e., error conditions) have been
defined and collected into the USIGS Common Object (UCO) Specification. The intent is for all USIGS
specifications to draw upon the UCO definitions when appropriate rather then redefine a common element.
In order to support interoperability, the GIAS specification uses the definitions in the UCO whenever they
are appropriate. The specific UCO entities that GIAS uses are detailed below. The definitions given are
descriptions of how GIAS uses these entities and are not intended to replace the definitions specified in the
UCO. Only cases where the UCO data type is used as an element of a GIAS data type are detailed below. For
cases where the UCO element is used in a GIAS operation, its intended use is defined in the text
accompanying each operation. All GIAS operations are defined in section 2.3.

2.2.1.1. PropertyList

typedef UCO::NameValueList PropertyList;

The PropertyList is a typedef of UCO::NameValueList structure, which is re-used to hold the name value
pairs (Properties) that are used to augment or clarify many of the operations of the RequestManager.

2.2.1.2. GeoRegion and GeoRegionType

typedef UCO::Rectangle GeoRegion;

enum GeoRegionType {

LINE_SAMPLE_FULL,

LINE_SAMPLE_CHIP,

LAT_LON,

ALL,

NULL_REGION};

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

8

The GIAS specification uses the GeoRegion data type to define geospatial subsections of products or data
sets. Currently the only type of subsection allowed is rectangular. The GIAS specification thus defines
GeoRegion based on the UCO:: Rectangle. The GeoRegion type upper_left component is defined as the first
column/row in the Chippable Image. The enumeration GeoRegionType indicates the type of coordinate
system used by a GeoRegion:

• LINE_SAMPLE_FULL – An image coordinate system defined by the original full resolution image;

• LINE_SAMPLE_CHIP – An image coordinate system defined by an image which has been extracted
from a larger image ;

• LAT_LON – A geographic coordinate system expressed in decimal degrees (x = latitude y=longitude).
The convention used in this specification is that a positive value for latitude or longitude indicates a
northern/eastern direction and a negative value indicates a southern/western direction.

• ALL – The special case of a GeoRegion that includes the entire product or data set.

• NULL_REGION – The special case of a null or empty GeoRegion

2.2.1.3. Status and State (j/NPS)

The GIAS specification uses the State enumeration defined in UCO paragraph 2.2.4 to identify the state of
Request objects. The specific states and state transitions that the concrete Request objects may use are
defined in Appendix G.

2.2.2. GIAS Specific Data Types (j/NPS)

The GIAS specification defines a number of data types that are specific to the GIAS. The definitions of the
specific types are given in the following sections.

2.2.2.1. AvailabilityRequirement, and UseMode

The types described in this subsection are used exclusively by the AccessManager.

enum AvailabilityRequirement

 {

 REQUIRED, NOT_REQUIRED

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

9

The enumeration AvailabilityRequirement is used by the AccessManager to determine if the request is to
place a product into a certain mode (REQUIRED) or a request for a product to be removed from a certain
mode (NOT_REQUIRED).

typedef string UseMode;

UseMode is a string that describes a purpose or intended use of a data set or product. It is used by the
AccessManager to support client requests and monitoring of the readiness of products for their use.

2.2.2.2. OrderType, ProductSpec, ProductFormat, AlterationSpec, PackagingSpec,
ImageFormat, Compression, BitsPerPixel, Algorithm, SupportDataEncoding,
ProductFormatList, ImageSpec, ImageSpecList, ImageUniqueIdentifier and
AlternationSpecList

The types described in this subsection are used by the OrderMgr to describe the details of an order. An
order is a request to have one or more products delivered from a Library to one or more destinations in one
or more specific forms.

enum OrderType {STANDING, IMMEDIATE};

This type is used to distinguish between an immediate order which is to be performed once based on the
current state of the Library and a standing order which is to be performed repeatedly until the order lifetime
expires.

typedef string ProductFormat;

This type identifies the specific product format.

typedef string ImageFormat;

This type identifies the specific image format.

typedef string Compression;

This type identifies the compression type.

typedef short BitsPerPixel;

This type identifies the number of bits of data in an uncompressed pixel.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

10

typedef string Algorithm;

This type identifies the algorithm to be used for alteration.

typedef string ImageUniqueIdentifier;

This type identifies the unique image identification that can be used for ordering a set of images.

typedef any ProductSpec;

The ProductSpec will contain one of the following specialized product format structures: ImageSpec or
ImageSpecList.

Enum SupportDataEncoding {ASCII, EBCDIC};

typedef sequence < ProductFormat > ProductFormatList;

struct ImageSpec

 {

 ImageFormat imgform;

ImageUniqueIdentifier imageid;

 Compression comp;

 BitsPerPixel bpp;

 Algorithm algo;

RsetList rrds;

GeoRegion sub_section;

GeoRegionType geo_region_type;

SupportDataEncoding encoding;

 };

typedef sequence < ImageSpec > ImageSpecList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

11

struct AlterationSpec

 {

 ProductFormat pf;

 ProductSpec ps;

 GeoRegion sub_section;

GeoRegionType geo_region_type;

 };

typedef sequence < AlterationSpec >
AlterationSpecList;

This structure describes details of how a product is to be altered before being delivered. There are three
types of alterations that can be specified:

1. The element pf indicates the desired choice of a specific data and compression format.

2. The element ps contains alteration details specific to the specific product format

3. The element sub_section contains a geographically defined subsection of the whole product.

4. The element geo_region_type defines the type of coordinate system in element sub_section

struct PackagingSpec

 {

 string package_identifier;

 string packaging_format_and_compression;

 };

The PackagingSpec defines characteristics of the data package that are sent to the client. This package may
contain one or more products in the requested form. The PackagingSpec allows a client to specify:

1. An identifier for the package (package_identifier) so the client can identify the package when it
arrives and

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

12

2. A choice of specific format and compression type for the package
(packaging_format_and_compression).

2.2.2.3. TailoringSpec

struct TailoringSpec {

UCO::NameNameList specs;

 };

The TailoringSpec structure defines the information required to describe processing or modifications to be
done to an ordered product by the Library prior to being sent to the client. The TailoringSpec contains a
NameNameList where each NameName pair includes an identifier for a processing step in the first Name and
any parameters for that step in the second Name.

2.2.2.4. Destination, DestinationType, and DestinationList

enum DestinationType

 {

 FTP,EMAIL,PHYSICAL

 };

union Destination switch (DestinationType)

 {

 case FTP: UCO::FileLocation f_dest;

 case EMAIL: UCO::EmailAddress e_dest;

 case PHYSICAL: PhysicalDelivery h_dest;

 };

typedef sequence < Destination > DestinationList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

13

These types describe the details of a destination for an order. The enumeration DestinationType describes
the three choices for delivery modes. Mode FTP indicates the package will be sent electronically via an FTP
(or similar) mechanism, mode EMAIL indicates that the package will be sent via an e-mail enclosure and
mode PHYSICAL indicates a hardcopy or physical media was ordered and will be delivered physically.

The structure Destination defines the data type that must be provided when the above-defined modes are
selected. Element f_dest indicates the location for FTP type deliveries, element e_dest contains an email
address for EMAIL type deliveries, and h_dest contains a PhysicalDelivery structure that contains the
details required for a PHYSICAL type delivery

The sequence DestinationList is used to provide a set of destinations as a single list.

2.2.2.5. MediaType and MediaTypeList

 struct MediaType

 {

 string media_type;

unsigned short quantity;

 };

typedef sequence < MediaType > MediaTypeList;

This data structure specifies the media type of the data set or product ordered by a client. This attribute of
an order is only relevant for a DestinationType type of PHYSICAL.

2.2.2.6 PhysicalDelivery

struct PhysicalDelivery

 {

string address;

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

14

 This structure defines the details for an order which is to be delivered physically to the receiver rather than
electronically.

2.2.2.7. ValidationResults and ValidationResultsList

struct ValidationResults

 {

 boolean valid;

 boolean warning;

 string details;

 };

 typedef sequence < ValidationResults >
ValidationResultsList;

The data structure ValidationResults is used by the OrderMgr to validate orders before submitting by the
order operation. The structure indicates the validity of a proposed order and information concerning the
proposed order. A validated order will be judged to be in one of three states: valid, invalid or valid with
warning. If the value of the data element “valid” is “TRUE”, then this indicates that the order is valid. If the
value of the data element “valid” is “FALSE”, this indicates that the order has been judged to be invalid and
the value of the data element “details” is a human readable and interpretable string that explains why the
order is invalid. The additional data element “warning” is used in combination with the “valid” boolean to
indicate that a warning has been noted. The table below summarizes the states of ValidationResults.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

15

Table 2-1 Validation Results Table

Warning Valid

True False

True Details contains warning
message of proposed order

Details contains explanation
of invalid order

False Details not applicable Details contains explanation
of invalid order

2.2.2.8. RelatedFileType, RelatedFileTypeList, RelatedFile & RelatedFileList

 typedef UCO::Name RelatedFileType;

typedef sequence<RelatedFileType>
RelatedFileTypeList;

struct RelatedFile

 {

 RelatedFileType file_type;

 UCO::FileLocation location;

 };

typedef sequence <RelatedFile> RelatedFileList;

The RelatedFileType is used by the ProductMgr get_related_files to provide access to arbitrary
datasets/files related to a specified Product.

 The structure RelatedFile defines a relationship between a file instance located at location and a
RelatedFileType in file_type. RelatedFileList provides a sequence of these structures. These structures are
used by the CreationMgr to support the specification of related files when defining a product for creation.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

16

2.2.2.9. ConceptualAttributeType, Entity, DomainType, DateRange, IntegerRange,
FloatingPointRange, Domain, AttributeType, RequirementMode, AttributeInformation,
Association, ViewName, ViewNameList, View, ViewList, IntegerRangeList,
FloatingPointRangeList, AssociationList, and AttributeInformationList

The data types listed in this subsection are utilized by the DataModelMgr . The DataModelMgr uses the
idea of a Conceptual Attribute to remain data model neutral. A conceptual attribute is an attribute that
serves as a label for a concept that is likely to be present in metadata models of interest and which needs to
be discovered by the client. It is in essence a minimal meta-metadata model. For each metadata model of
interest, each conceptual attribute can either be mapped to a single logical attribute or is not supported.

enum ConceptualAttributeType

 {

 FOOTPRINT, CLASSIFICATION, OVERVIEW, THUMBNAIL,

 DATASETTYPE, MODIFICATIONDATE, PRODUCTTITLE,

 DIRECTACCESS,DIRECTACCESSPROTOCOL,

 UNIQUEIDENTIFIER, DATASIZE

 };

This data type is used by the DataModelMgr selector operation get_logical_attribute_name to obtain the
logical attribute name that is the equivalent of the ConceptualAttributeType. The ConceptualAttributeType
exhaustively enumerates all conceptual attribute types. The definition,valid data types and domain for each
of the ConceptualAttributes are defined in the following table:

ConceptualAttribute Description Valid Data types Domain

FOOTPRINT Describes a
products
geospatial
location or
bounds

UCO::Coordinate2d
UCO::Coordinate3d
UCO::LineString2d
UCO::LineString3d
UCO:Polygon
UCO:PolygonSet
UCO::Rectangle
UCO::RectangleList
UCO::Circle
UCO::Ellipse

Entire domain of datatype

CLASSIFICATION Indicates the
products
security
classification

CORBA::string Domain defined in appropriate GIAS
profile

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

17

OVERVIEW Indicates the file
name of the
product’s
overview
representation

CORBA::string Entire domain of datatype

THUMBNAIL Indicates the file
name of the
product’s
thumbnail
representation

CORBA::string Entire domain of datatype

DATASETTYPE Indicates the
product’s type

CORBA::string Domain defined in appropriate GIAS
profile

MODIFICATIONDATE Indicates the
date the product
was last
modified

UCO::AbsTime
UCO:Date

Entire domain of datatype

PRODUCTTITLE Indicates the
textual title of
the product

CORBA:string Entire domain of datatype

DIRECTACCESS Indicates the file
location of the
product

UCO::FileLocation Entire domain of datatype

DIRECTACCESSPROTOCOL Indicates the
transfer
protocol by
which the
product may be
retrieved

CORBA::string Domain defined in appropriate GIAS
profile

UNIQUEIDENTIFIER Indicates the
identifier which
uniquely
identifies the
product

CORBA::long
CORBA::string

Entire domain of datatype

DATASIZE Indicates the
total data size of
the product

UCO::FileSize Entire domain of datatype

 typedef string Entity;

 This data type represents the name of a data model entity.

typedef string ViewName;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

18

typedef sequence< ViewName > ViewNameList;

struct View {

 ViewName view_name;

 ViewNameList subViews;

boolean orderable;

};

typedef sequence < View > ViewList;

These data types are used to define the identifier for a view (viewName) and to express the relationships of
views to other related views (subViews). It also indicates whether the contents described by the view can be
ordered.

enum DomainType{

DATE_VALUE, TEXT_VALUE, INTEGER_VALUE,
FLOATING_POINT_VALUE, LIST, ORDERED_LIST,
INTEGER_RANGE, FLOATING_POINT_RANGE, GEOGRAPHIC,
INTEGER_SET, FLOATING_POINT_SET, GEOGRAPHIC_SET,
BINARY_DATA, BOOLEAN_VALUE

 };

This data type defines the equivalent of a mathematical domain, which is used in the data structure Domain.

 struct DateRange

 {

 UCO::AbsTime earliest;

 UCO::AbsTime latest;

 };

This data structure defines the mathematical range for data that expresses a calendar date. It is used in the
data structure Domain.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

19

struct IntegerRange

 {

 long lower_bound;

 long upper_bound;

 };

This data structure defines the mathematical range for integer, which is used in the data structure Domain.

 struct FloatingPointRange

 {

 double lower_bound;

 double upper_bound;

 };

This data structure defines the mathematical range for floating point, which is used in the data structure
Domain.

typedef sequence < IntegerRange > IntegerRangeList;

This data type definition represents a set of integer ranges, which is used in the data structure Domain.

typedef sequence < FloatingPointRange >
FloatingPointRangeList;

This data type definition represents a set of floating point ranges, which is used in the data structure
Domain.

union Domain switch (DomainType)

 {

 case DATE_VALUE: DateRange d;

 case TEXT_VALUE: unsigned long t;

 case INTEGER_VALUE: IntegerRange iv;

 case INTEGER_SET: IntegerRangeList is;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

20

 case FLOATING_POINT_VALUE: FloatingPointRange
fv;

 case LIST: UCO::NameList l;

 case ORDERED_LIST: UCO::NameList ol;

 case INTEGER_RANGE: IntegerRange ir;

 case FLOATING_POINT_RANGE: FloatingPointRange
fr;

 case FLOATING_POINT_SET:
FloatingPointRangeList fps;

 case GEOGRAPHIC: UCO::Rectangle g;

 case GEOGRAPHIC_SET: UCO::RectangleList
gs;

 case BINARY_DATA: UCO::BinData bd;

 case BOOLEAN_VALUE: boolean bv;

};

This data type associates a member of the set DomainType with a defined range.

enum AttributeType

 {

 TEXT,

 INTEGER,

 FLOATING_POINT,

 UCOS_COORDINATE,

 UCOS_POLYGON,

 UCOS_ABS_TIME,

 UCOS_RECTANGLE,

 UCOS_SIMPLE_GS_IMAGE,

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

21

 UCOS_SIMPLE_C_IMAGE,

 UCOS_COMPRESSED_IMAGE,

 UCOS_HEIGHT,

 UCOS_ELEVATION,

 UCOS_DISTANCE,

 UCOS_PERCENTAGE,

 UCOS_RATIO,

 UCOS_ANGLE,

 UCOS_FILE_SIZE,

 UCOS_FILE_LOCATION,

 UCOS_COUNT,

 UCOS_WEIGHT,

UCOS_DATE,

UCOS_LINESTRING,

UCOS_DATA_RATE,

UCOS_BIN_DATA,

BOOLEAN_DATA,

UCOS_DURATION

 };

This data type exhaustively enumerates all attribute types.

enum RequirementMode

 {

 MANDATORY, OPTIONAL

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

22

 };

This data type defines the requirements mode for an attribute and is used as a component of the
AttributeInformation struct. The elements specify whether the attribute is optional or mandatory for
purposes of creation of a product.

struct AttributeInformation

 {

 string attribute_name;

 AttributeType attribute_type;

 Domain attribute_domain;

 string attribute_units;

string attribute_reference;

 RequirementMode mode;

 string description;

 boolean sortable;

boolean updateable;

 };

typedef sequence < AttributeInformation >
AttributeInformationList;

This data type represents a set of characteristics that together describe an attribute. The syntax for the
attribute names in field attribute_name is defined in section 4.4.6. (Attribute Name Syntax Rule)

struct Association {

string name;

ViewName view_a;

ViewName view_b;

string description;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

23

UCO::Cardinality card;

AttributeInformationList attribute_info;

};

typedef sequence <Association> AssociationList;

These data types are used by the DataModelMgr to describe the relationships between views.

2.2.2.10. ProductDetails, ProductDetailsList, DeliveryDetails, DeliveryDetailsList,
OrderContents & QueryOrderContents

struct ProductDetails {

MediaTypeList mTypes;

 UCO::NameList benums;

 AlterationSpec aSpec;

 UID::Product aProduct;

 string info_system_name;

};

typedef sequence <ProductDetails> ProductDetailsList;

struct DeliveryDetails {

 Destination dests;

 string receiver;

 string shipmentMode;

};

typedef sequence < DeliveryDetails > DeliveryDetailsList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

24

struct OrderContents {

string originator;

TailoringSpec tSpec;

PackagingSpec pSpec;

UCO::AbsTime needByDate;

string operatorNote;

short orderPriority;

ProductDetailsList prod_list;

DeliveryDetailsList del_list;

};

struct QueryOrderContents {

string originator;

TailoringSpec tSpec;

PackagingSpec pSpec;

string operatorNote;

short orderPriority;

AlterationSpec aSpec;

DeliveryDetailsList del_list;

};

These data structures are used to describe the details of an order and a query (standing) order.

2.2.2.11. AccessCriteria (j/NPS)

struct AccessCriteria {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

25

string userID;

string password;

string licenseKey;

};

The structure AccessCriteria contains the information used for access control of GIAS Library capabilities.

2.2.3. GIAS Simple Data Types (j/NPS)

The GIAS defines a number of simple data types.

2.2.3.1. LibraryList, RequestList, ManagerType, ManagerTypeList, UseModeList,
and RsetList (j/NPS)

 typedef sequence < Library > LibraryList;

 typedef string ManagerType;

 typedef sequence < ManagerType > ManagerTypeList;

 typedef sequence < Request > RequestList;

 typedef sequence < UseMode > UseModeList;

typedef sequence <short> RsetList;

The GIAS specification defines a number of convenience structures that are a sequence of other defined
types. LibraryList contains a sequence of references of type Library. ManagerType is a string.
ManagerTypeList contains an unbounded sequence of ManagerType. RequestList contains a sequence of
references of type Request. RsetList contains a sequence of short integers. UseModeList contains a
sequence of UseMode (UseMode is type String).

2.2.3.2. LibraryDescription and LibraryDescriptionList

 struct LibraryDescription

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

26

 string library_name;

 string library_description;

 string library_version_number;

 };

typedef sequence < LibraryDescription >
LibraryDescriptionList;

The LibraryDescription structure contains the name of a specific Library instance in the string library_name.
The string Library_description contains a human readable description of the Library and its holdings. The
Library_version_number provides a mechanism for clients to determine the version of the GIAS
specification used by this specific library implementation. LibraryDescriptionList contains an unbounded
sequence of LibraryDescriptions.

2.2.3.3. Query

struct Query {

ViewName view_name;

string bqs_query;

 };

The data structure Query is composed of a query expression for a particular view of a given data model.

2.2.3.5. QueryResults

typedef UCO::DAGList QueryResults;

The QueryResults structure is used to contain a collection of results from a catalog query. Each individual
result in this collection contains metadata that describes a data set or product and a reference to that data
set or product in the form of a Product. The QueryResults structure re-uses the DAGList type defined in the
UCO specification. The set of results from a catalog query is expressed in a QueryResults structure by
applying the following rules:

1) Each result (catalog record or “hit”) consists of an identifier of a data set or product and a set of
metadata elements. The identifier will be in the form of a Product reference for that data set. The
metadata elements will each consist of an attribute name and a type and value for that attribute and
the relationships among the metadata elements.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

27

2) Each result is placed in its own DAG.

3) Each metadata element is placed in its own node by setting the attribute_name of the node to
reflect the name of the metadata element and by setting the value of the node to reflect the type
and value of that metadata element.

4) The number, type and name for the relationships in a DAG are dependent on the data model that
underlies the catalog that generated the result and are thus implementation dependent.

2.2.3.6. LifeEventType, LifeEvent, NamedEventType, Event, EventList, DayEvent,
DayEventTime, LifeEventList, and QueryLifeSpan

enum LifeEventType

{

 ABSOLUTE_TIME,

 DAY_EVENT_TIME,

 NAMED_EVENT,

 RELATIVE_TIME

};

union LifeEvent switch (LifeEventType)

 {

 case ABSOLUTE_TIME: UCO::AbsTime at;

 case DAY_EVENT_TIME: DayEventTime day_event;

 case NAMED_EVENT: string ev;

 case RELATIVE_TIME: UCO::Time rt;

 };

enum NamedEventType

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

28

{

 START_EVENT,

 STOP_EVENT,

 FREQUENCY_EVENT

};

 struct Event {

 string event_name;

 NamedEventType event_type;

 string event_description;

};

typedef sequence < Event > EventList;

enum DayEvent { MON, TUE, WED, THU, FRI, SAT, SUN,
FIRST_OF_MONTH, END_OF_MONTH };

struct DayEventTime

{

 DayEvent day_event;

 UCO::Time time;

};

typedef sequence < LifeEvent > LifeEventList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

29

struct QueryLifeSpan {

LifeEvent start;

LifeEvent stop;

LifeEventList frequency;

};

These data structures are used by a client when interacting with the StandingQueryMgr and
QueryOrderMgr to identify and describe events that can be used to establish the lifetime of a standing
query. These Managers can be used to establish the lifetime of a standing query and how frequently it is
run, by setting these elements. They allow an event in the lifetime of a query to be defined as one of the
following: 1) an absolute time (e.g., start on 12 Jan 99); 2) an event; or 3) a relative time. These types of life
events can be used to describe the start, stop points, and frequency of a standing query. NB: Not all
combinations of absolute, relative and event references with start, stop and frequency are meaningful.

2.2.3.7. Polarity, SortAttribute and SortAttributeList

 These data structures are used to indicate the sorting preferences of query results.

enum Polarity { ASCENDING, DESCENDING };

 struct SortAttribute

 {

 UCO::Name attribute_name;

 Polarity sort_polarity;

 };

 typedef sequence < SortAttribute >
SortAttributeList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

30

2.2.3.8 DelayEstimate

struct DelayEstimate {

 unsigned long time_delay;

 boolean valid_time_delay};

This structure returns an approximate time delay (i.e., time_delay) when valid_time_delay is true.
Time_delay is not valid when valid_time_delay is false and should be ignored by the client application.

2.2.3.9 PackageElement, PackageElementList, and DeliveryManifest

struct PackageElement {

UID::Product prod;

UCO::NameList files;

};

typedef sequence< PackageElement >
PackageElementList;

 struct DeliveryManifest {

string package_name;

PackageElementList elements;

};

typedef sequence<DeliveryManifest>
DeliveryManifestList;

These structures are used to describe the contents of a delivery. The DeliveryManifest contains the names
of the package (package_name) and a list of PackageElement structures. Each of these PackageElement
structures describes an element included in the package. A PackageElement describes a package element by
containing the UID::Product identifier and a list of the file names that make up that product as delivered.

2.2.3.10 CallbackID (j/NPS)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

31

typedef string CallbackID;

The data type CallbackID is used as an identifier for an instance of a Callback. The specific details of this
data type are found in the appropriate GIAS profile.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

32

2.3. Interfaces
2.3.1. Library (j/NPS)

interface Library

{

 ManagerTypeList get_manager_types ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 LibraryManager get_manager

 (in ManagerType manager_type,

 in AccessCriteria
access_criteria)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

LibraryDescription get_library_description ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

LibraryDescriptionList get_other_libraries

 (in AccessCriteria access_criteria)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

};

The Library interface serves as the starting point for any interaction with the rest of the Library. All
capabilities of a library system are accessed through the Manager objects it supports. The Library interface

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

33

is the mechanism by which a client discovers and requests access to Manager objects. The operations
defined in the Library interface are described in the following subsections.

2.3.1.1. get_manager_types

ManagerTypeList get_manager_types()

raises (UCO::ProcessingFault, UCO::SystemFault);

This selector operation allows a client to discover which Managers are supported by a particular GIAS
library. A ManagerTypeList structure is returned from a successful invocation of this operation. The
ManagerTypeList returned by this operation will contain the names of all Manager types supported by this
implementation. The Manager names contained in this list are used with the get_manager_types operations
defined below to specify the type of Manager desired.

2.3.1.2. get_manager (j/NPS)

LibraryManager get_manager

 (in ManagerType manager_type,

 in AccessCriteria
access_criteria)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation is a Request to be given access to a Manager object. The client supplies the type of
Manager desired in manager_type and supplies information used for access control in access_criteria. (See
the get_manager_types operations for details on determining acceptable values). A successful invocation
will return a reference to an object of type LibraryManager. This reference should then be narrowed (cast)
into a reference to an object of the specific Manager type requested in manager_type. It can be assumed
that all Manager types supported by a GIAS implementation are derived (inherited) from type
LibraryManager. The client must know the correlation between the names given in the ManagerTypeList
and the object type to which that corresponds. Subsequent calls to get_manager by the same client will
result in the return of the same instance of a Manager or a new instance that has exactly the same state as
the first instance (i.e., the state of the Manager is persistent).. Also calls to get_manager by different clients
will always result in different instances of Managers being returned. That is, the library system will not force
clients to share an instance of a Manager.

The standard exception identifier UnknownManagerType is returned by this operation if the client has
supplied a value of manager_type unknown or unsupported by this implementation. Supplying an unknown
criteria in access_criteria will result in the BadAccessCriteria standard exception identifier. Supplying an
unacceptable value for an OPTIONAL attribute in access_criteria will result in the BadAccessValue
standard exception identifier. Supplying incorrect or unacceptable values for one or more MANDATORY
attributes in access_criteria will result in the NO_PERMISSION system exception being returned. (See
Appendix E for a list of other system exceptions)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

34

2.3.1.3. get_library_description

LibraryDescription get_library_description()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This selector operation returns some descriptive information about the Library. A successful invocation of
this operation will return a populated LibraryDescription structure.

2.3.1.4. get_other_libraries

LibraryDescriptionList get_other_libraries

 (in AccessCriteria access_criteria)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This selector operation returns some descriptive information about other Libraries known to this Library that
are accessible to the requesting user. access_criteria holds any identifying or access control information
needed. A successful invocation of this operation will return an unbounded list of Library descriptions.

2.3.2. LibraryManager

interface LibraryManager

{

 UCO::NameList get_property_names ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 PropertyList get_property_values

 (in UCO::NameList desired_properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

35

 LibraryList get_libraries ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

};

The LibraryManager interface serves as the (abstract) root for all types of Manager objects in the GIAS
definition. It is abstract in the sense that a concrete LibraryManager object by itself would serve no real
purpose. Its real purpose is to define certain operations that are common to all types of Manager objects in
GIAS. Because these operations are common to all Manager types, a client can use these common
operations to interact with Managers of unfamiliar type.

The operations defined in the LibraryManager interface are described in the following subsections.

2.3.2.1. get_property_values

PropertyList get_property_values

 (in UCO::NameList desired_properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to discover the properties and the current values of those properties that
describe a Manager. A client supplies the names of the properties of interest in the NameList
desired_properties. A successful invocation of this operation returns a PropertyList, which contains the
current values of the requested properties. The PropertyList will contain one NameValue pair for each
element supplied in the NameList desired_properties . The name in that NameValue pair will be the name as
specified in desired_properties. The value associated with that name will be the current value of that
property. The specific set of properties supported by a Manager is defined in the appropriate GIAS profile.

The standard exception identifier UnknownProperty will be returned if the client has supplied one or more
properties unknown or unsupported by this Manager..

2.3.2.2. get_libraries

 LibraryList get_libraries ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

36

This selector operation allows a client to determine which GIAS-based Library system(s) this Manager
supports. A successful invocation of this operation will return a LibraryList structure. This structure will
contain an object reference of type Library for each Library this Manager supports. There will always be at
least one Library object reference in this list.

2.3.2.3. get_property_names

UCO::NameList get_property_names ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This selector operation allows a client to obtain a list of property names. A property name is the name
component of a NameValue pair. The NameList returned by this selector operation identifies all the property
names supported or known by this Manager.

2.3.3. RequestManager (j/NPS)

interface RequestManager:

{

 RequestList get_active_requests ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void set_default_timeout (in unsigned long
new_default)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_default_timeout ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 void set_timeout (in Request aRequest,

 in unsigned long new_lifetime)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

37

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_timeout (in Request aRequest)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 void delete_request (in Request aRequest)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

The RequestManager interface serves to define operations common to all Managers that use Request
objects as part of their operations. This interface is abstract. Also, these common operations allow a client
to interact with unfamiliar forms of RequestManagers. The operations defined on RequestManager serve to
allow clients to identify active Requests and control their lifetimes.

Each Request being managed by a RequestManager has a limited lifetime. This lifetime is considered to
begin when the processing it represents reaches the COMPLETE state and ends when the timeout set for
that particular Request has elapsed. After a Request’s lifetime has expired a RequestManager is free to (but
is not required to) delete that Request as well as all resources associated with that Request.

The operations defined in the RequestManager interface are described in the following subsections.

2.3.3.1. get_active_requests (j/NPS)

RequestList get_active_requests ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to determine what Requests are being managed by this RequestManager. A
successful invocation of this operation will return a RequestList structure. This structure will contain an
object reference of type Request for each Request currently being managed by this RequestManager.

2.3.3.2. set_default_timeout

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

38

 void set_default_timeout (in unsigned long
new_default)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to set a default value (in seconds) of the lifetime of the Requests being
managed by this RequestManager. The client supplies the desired lifetime in new_default. Following
successful invocation of this operation, all new Requests managed by this RequestManager will have a
lifetime of new_default seconds. This operation has no effect on the lifetime of Requests that already exist
at the time of invocation of this operation.

The standard exception identifier ImplementationLimit will be returned if the client attempts to set a default
lifetime that exceeds the maximum lifetime supported by this RequestManager implementation. The value of
this maximum is implementation dependent and may vary over time.

2.3.3.3. get_default_timeout

unsigned long get_default_timeout ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to determine the current default lifetime for Requests initiated by this
RequestManager. Successful invocation of this operation will return the current default lifetime of Requests
in seconds.

2.3.3.4. set_timeout

void set_timeout (in Request aRequest,

 in unsigned long new_lifetime)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to modify the currently set value for the lifetime of a Request. The client
supplies the Request that is to have its lifetime modified in aRequest and the desired value of its new lifetime
in new_lifetime. Following successful invocation of this operation, the lifetime of Request aRequest will be

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

39

new_lifetime seconds. If the Request aRequest has not reached a COMPLETE state, the lifetime will be
new_lifetime seconds beginning from the time it reaches the COMPLETE state. If Request aRequest is
already in the COMPLETE state when this operation is invoked (that is a portion of its lifetime has already
elapsed), the lifetime of Request aRequest will be new_lifetime seconds beginning from the time the
set_timeout operation successfully completes.

The standard exception identifier UnknownRequest will be returned if the client has supplied a Request
unknown to this instance of RequestManager. The standard exception identifier ImplementationLimit will
be returned if the client attempts to set a default lifetime that exceeds the maximum lifetime supported by this
RequestManager implementation. The value of this maximum is implementation dependent and may vary
over time.

2.3.3.5. delete_request (j/NPS)

void delete_request (in Request aRequest)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to destroy a Request and free all resources associated with that Request. A
client supplies the Request to be destroyed in aRequest. Following successful invocation of this operation,
the RequestManager is free to (but is not required to) immediately destroy Request aRequest and to free all
resources associated with that Request.

The standard exception identifier UnknownRequest will be returned if the client has supplied a Request
unknown to this instance of RequestManager. After the RequestManager has destroyed the Request,
attempts to invoke operations on that Request will return the OBJECT_NOT_EXIST system exception.

2.3.3.6. get_timeout

unsigned long get_timeout (in Request aRequest)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

The selector operation get_timeout provides the client with the amount of time that remains on Request
aRequest before the RequestManager deletes the Request.

2.3.4. AccessManager

interface AccessManager:RequestManager

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

40

 {

 UseModeList get_use_modes ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 boolean is_available (in UID::Product product,

 in UseMode use_mode)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

// Returns the time (in seconds) estimated to put the

// requested product into the requested UseMode.

// DOES NOT request a change in the availabilty of
the product.

 unsigned long query_availability_delay

 (in UID::Product product,

 in AvailabilityRequirement
availability_requirement,

 in UseMode use_mode)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

short get_number_of_priorities()

raises (UCO::ProcessingFault,
UCO::SystemFault);

SetAvailabilityRequest set_availability

 (in UID::ProductList products,

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

41

 in AvailabilityRequirement
availability_requirement,

 in UseMode use_mode,

 in short priority)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

The AccessManager is an abstract interface that serves to define operations common to Managers that
allow clients to determine and control the “availability” of a data set or product. “availability” is defined as
the readiness of a data set or product to be used by the other operations on the Manager. An
AccessManager describes “availability” by defining one or more UseModes. A UseMode is a state or
condition of a data set or product that indicates its readiness to be used by the AccessManager for a
specific purpose.

The operations defined in the AccessManager are described in the following subsections.

2.3.4.1. get_use_modes

UseModeList get_use_modes ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to discover the UseModes supported by this AccessManager.
A successful invocation of this operation returns a UseModeList containing all of the
UseModes supported or known to this AccessManager.

2.3.4.2. is_available

boolean is_available (in UID::Product product, in
UseMode use_mode)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

42

This operation allows a client to determine whether a data set or product is ready for a specific purpose. A
client indicates the data set or product of interest and its desired use by supplying both a reference of type
Product in product and its intended use as a UseMode in use_mode. A successful invocation of this
operation will return a boolean that indicates whether or not the requested data set or product is currently
available for the requested use. A boolean value of “TRUE” indicates the product is available. A boolean
value of FALSE indicates that the product is not currently available for the requested use. This operation
does not affect the current availability of the requested data set or product.

The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to this AccessManager. The standard exception identifier UnknownUseMode will be
returned if the client supplied a UseMode unknown or unsupported by this AccessManager. The standard
exception identifier BadUseMode is returned if the client supplied a UseMode that is inappropriate or
unsupported for the particular data set or product supplied in product.

2.3.4.3. get_number_of_priorities

short get_number_of_priorities()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation returns the number of priority levels this OrderMgr recognizes. Priorities are ordered from 1
(one) to N, where 1 is the highest priority and N the lowest. This operation returns the N for this
AccessManger.

2.3.4.4. set_availability

SetAvailabilityRequest set_availability

 (in UID::ProductList products,

 in AvailabilityRequirement
availability_requirement,

 in UseMode use_mode,

in short priority)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to submit a Request to make one or more products available for a specific
purpose or to indicate that the products are no longer needed for the specific purpose. A client indicates
data sets or products of interest and their desired use by supplying both a list of references of type Product

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

43

in the productList products and its intended use as a UseMode in use_mode. The client also includes a
parameter of type AvailabilityRequirement. If that parameter holds the value REQUIRED it indicates the
client wishes to have the products put into the requested UseMode. If the parameter holds the value
NOT_REQUIRED, it indicates the client no longer needs the products in that mode and the server is free to
remove it from that mode. The client also supplies a priority as a short in the parameter priority.

The standard exception identifier UnknownProduct will be returned if the client supplied one or more
product references unknown to this AccessManager. The standard exception identifier UnknownUseMode
will be returned if the client supplied a UseMode unknown or unsupported by this AccessManager. The
standard exception identifier BadUseMode is returned if the client supplied a UseMode that is inappropriate
or unsupported for the particular data set or product supplied in product.

The BadUseMode standard exception identifier will also occur if the requested data set or product can never
be made available in the requested UseMode.

2.3.4.5. query_availability_delay

unsigned long query_availability_delay (in
UID::Product product,

 in AvailabilityRequirement

 availability_requirement,

 in UseMode use_mode)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This selector operation allows a client to get an estimate of the time in seconds for a product to be placed in
the requested mode. Invocation of the operation does NOT submit a Request to actually place the product
in the specified mode, it only returns an estimate of the time required to do so. The parameters and standard
exception identifiers are identical to those of set_availability defined above.

2.3.5. OrderMgr

interface OrderMgr:LibraryManager, AccessManager

 {

 UCO::NameList get_package_specifications()

raises (UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

44

 ValidationResults validate_order

 (in OrderContents order,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 OrderRequest order (in OrderContents order,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

The OrderMgr allows a client to submit orders for data sets or products from a GIAS Library. The OrderMgr
provides an operation to validate an order specification prior to submitting the order to a GIAS Library. Both
operations on this Manager re-use the OrderContents structure to describe an order. The operations defined
in the OrderMgr interface are described in the following subsections.

2.3.5.1. get_package_specifications

UCO::NameList get_package_specifications()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation returns a NameList containing all packaging specifications known or acceptable to this
OrderMgr. These packaging specifications are used as values for the element
packaging_format_and_compression in PackagingSpec structures submitted in orders .

2.3.5.2. validate_order

ValidationResults validate_order

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

45

 (in OrderContents order,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

The operation validate_order is invoked to determine if an order Request for a data set or product from a
GIAS Library is valid. The operation returns a data structure indicating the validity of the order and
information concerning details specific to the validation of the order.

2.3.5.3. order

OrderRequest order (in OrderContents order,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

The operation order is used to request delivery of one or more products (i.e. place an order). The client
defines the order by assembling an OrderContents structure containing all necessary elements of the
desired order.

2.3.6. DataModelMgr

interface DataModelMgr:LibraryManager

 {

UCO::AbsTime get_data_model_date (in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

UCO::NameList get_alias_categories(in PropertyList
properties)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

46

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

UCO::NameNameList get_logical_aliases(in string
category, in PropertyList properties)

raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 string get_logical_attribute_name (in ViewName
view_name, in ConceptualAttributeType attribute_type,
in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 ViewList get_view_names (in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

AttributeInformationList get_attributes (in ViewName
view_name,

 in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 AttributeInformationList get_queryable_attributes

 (in ViewName view_name,

 in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

47

UCO::EntityGraph get_entities (in ViewName view_name,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 AttributeInformationList get_entity_attributes

 (in Entity aEntity,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 AssociationList get_associations(in PropertyList
properties);

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 unsigned short get_max_vertices(in PropertyList
properties)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

The DataModelMgr allows a client to discover and access the data model being used by the Library. This
capability allows a client to be constructed without “hard-coding” a specific data model into its design. The
DataModelMgr interface operations can be partitioned into two sets: access to ancillary data and access to
the data model itself. The ancillary set of selector operations provides the following:

• the last date and time the data model was updated (get_data_model_date);

• a list of communities that define their own set of aliases data model attribute names
(get_alias_categories);

• the aliases defined by a specific community (get_logical_aliases) and

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

48

• the logical attribute names that are the equivalent of the ConceptualAttributeType
(get_logical_attribute_name)

 The data model set of selector operations provides the following descriptions and associated interface
operations:

• the set of data views known by the Library (get_view_names);

• the set of attributes that describe a specific data view (get_attributes);

• the subset of attributes of a data view which are queryable (get_queryable_attributes);

• the set of entities that compose a specific data view (get_entities);

• the set of attributes for a specific Entity (get_entity_attributes);

• the set of associations available for use among views (get_associations) and

• the maximum number of vertices supported in a geospatial query (get_max_vertices)

 The operations defined for the DataModelMgr interface are described in the subsections below.

2.3.6.1. get_data_model_date

 UCO::AbsTime get_data_model_date (in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns the last date the Library’s data model was updated.

2.3.6.2. get_alias_categories

 UCO::NameList get_alias_categories(in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns a NameList containing user communities known to this Library. A user
community contained in the NameList is used as a parameter for the selector operation get_logical_aliases.

2.3.6.3. get_logical_aliases

 UCO::NameNameList get_logical_aliases(in string
category, in PropertyList properties)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

49

raises(UCO::InvalidInputParameter,

UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns a NameNameList, which contains a mapping of a specific community’s
aliases to names based on the logical data model of the Library. The syntax for the attribute names
contained in the NameNameList is defined in section 4.4.6. (Attribute Name Syntax Rule)

 The standard exception identifier UnknownCategory is returned if the category requested is unknown or
unsupported by this DataModelMgr.

2.3.6.4. get_logical_attribute_name

 string get_logical_attribute_name (in ViewName
view_name,in ConceptualAttributeType attribute_type,
in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns the name of the logical attribute that is the equivalent of the requested
ConceptualAttributeType in the requested view view_name . The syntax for the attribute names contained
in the string returned is defined in section 4.4.6. (Attribute Name Syntax Rule)

2.3.6.5. get_view_names

 ViewList get_view_names (in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns a DAG structure which provides a hierarchy of data views supported by the
Library for use by the client. The DAG is composed of a hierarchical set of nodes, where each node contains
a string identifying a data view.

2.3.6.6. get_attributes

 AttributeInformationList get_attributes (in ViewName
view_name,in PropertyList properties)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

50

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns an AttributeInformationList, which describes the requested data view. The
AttributeInformationList is composed of elements of type AttributeInformation. The
AttributeInformationList contains both queryable and non-queryable attributes. The syntax for the attribute
names contained in the AttributeInformation structure is defined in section 4.4.6. (Attribute Name Syntax
Rule)

 The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewName, UnknownProperty or BadPropertyValue.

2.3.6.7. get_queryable_attributes

 AttributeInformationList get_queryable_attributes

 (in ViewName view_name,

 in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns an AttributeInformationList , which describes a specific data view. The
AttributeInformationList is a sequence of elements of type AttributeInformation. The
AttributeInformationList contains the subset of all attributes that are queryable. The syntax for the attribute
names contained in the AttributeInformation structure is defined in section 4.4.6. (Attribute Name Syntax
Rule)

 The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

2.3.6.8. get_entities

 UCO::EntityGraph get_entities (in ViewName view_name,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

51

 This selector operation returns an EntityGraph, which represents a set of entities and their relationships
that compose a specific data view. Note that the cardinality is defined within the Edge structure of the
graph.

 The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

Note: All nodes of type Entity_Node

Name of Parent Table (root)

All values are not used but need to be initialized.
Cardinalities will be specified.

One-to-One One-to-Many

Entity Entity

DAG: Entities

Figure 2-1 Structure of Data View DAG

2.3.6.9. get_entity_attributes

 AttributeInformationList get_entity_attributes

 (in Entity aEntity,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

52

 This selector operation returns an AttributeInformationList, which represents a set of attributes that
describes a specific entity. The AttributeInformationList contains elements of type AttributeInformation.
The syntax for the attribute names contained in the AttributeInformation structure is defined in section 4.4.6.
(Attribute Name Syntax Rule)

 The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

2.3.6.10. get_associations

AssociationList get_associations(in PropertyList
properties);

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns a list of Association structures that contains the descriptions of the
associations that are used by the DataModelMgr.

2.3.6.11. get_max_vertices

unsigned short get_max_vertices(in PropertyList
properties);

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation returns the maximum number of vertices supported in geospatial queries.

2.3.7. StandingQueryMgr

 interface StandingQueryMgr:LibraryManager,
RequestManager

 {

 EventList get_event_descriptions()

raises (UCO::ProcessingFault, UCO::SystemFault);

 SubmitStandingQueryRequest submit_standing_query (

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

53

 in Query aQuery,

 in UCO::NameList result_attributes,

 in SortAttributeList sort_attributes,

 in QueryLifeSpan lifespan,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault,
UCO::SystemFault);

 };

 The StandingQueryMgr allows a client to place a query with a Library that will monitor the Library for new
products arriving in the Library and notify the requester.

2.3.7.1. get_event_descriptions

 EventList get_event_descriptions()

 raises (UCO::ProcessingFault,
UCO::SystemFault);

 This selector operation returns a list of events that can be used by the client in the lifespan parameter of
submit_standing_query to set the details of the lifetime of a standing query such as start, duration, and end.

2.3.7.2. submit_standing_query

 SubmitStandingQueryRequest submit_standing_query (

 in Query aQuery,

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

54

 in UCO::NameList result_attributes,

 in SortAttributeList sort_attributes,

 in QueryLifeSpan lifespan,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault,
UCO::SystemFault);

 This operation allows a client to establish a standing query, that is, a query that is run repeatedly for a set
period of time rather than simply once. The parameters, semantics and standard exception identifiers for this
operation are the same as for a single query. (see the submit_query operation of the CatalogMgr). In
addition to those parameters, the client specifies the period of time the query is to be run in the parameter
lifespan. The standard exception identifier InvalidEvent is returned if an event contained in lifespan is
inappropriate or unknown. The standard exception identifier ImplementationLimit is returned if a submitted
value in the QueryLifeSpan parameter exceeds this Manager’s capabilities. These limits are implementation
specific.

2.3.8. CreationMgr (j/NPS)

 interface CreationMgr:LibraryManager, RequestManager

 {

 CreateRequest create (in UCO::FileLocationList
new_product, in RelatedFileList related_files,in
UCO::DAG creation_metadata,

in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 CreateMetaDataRequest create_metadata (in UCO::DAG
creation_metadata, in ViewName view_name, in
RelatedFileList related_files, in PropertyList
properties)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

55

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 CreateAssociationRequest create_association(in string
assoc_name,

 in UID::Product view_a_object,

 in UID::ProductList view_b_objects,

 in UCO::NameValueList assoc_info)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

 The CreationMgr interface allows a client to nominate a data set or product to a Library(s) for inclusion in
the Library holdings. This interface also allows a client to nominate the metadata of a data set or product for
inclusion without supplying the data set or product itself. The operations defined in the CreationMgr
interface are described in the following subsections.

2.3.8.1. create (j/NPS)

 CreateRequest create (in UCO::FileLocationList
new_product, in RelatedFileList related_files, in
UCO::DAG creation_metadata, in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to nominate a data set or product for inclusion in the holdings of a Library(s).
The data set or product nominated must be accompanied by the appropriate metadata. The client nominates
a data set or product by supplying a FileLocationList new_product that points to the data set or product
being nominated. The client also indicates any related files that accompany this product by specifying them

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

56

in the parameter related_files. The metadata that must accompany this nomination may be supplied in one
of two ways: 1) the file at the location new_product contains the data set and all the appropriate metadata 2)
the file at location new_product contains the data set and some (to include none) of the metadata and
creation_metadata contains the remainder of the appropriate metadata. If the first method of metadata
submission is chosen a NULL value is supplied for creation_metadata. All metadata for the nominated
product is then expected to be in file at location new_product. If a non-NULL value is supplied for
creation_metadata this indicates that the second metadata submission method has been chosen and that the
metadata for the nominated product is to be found in the file at location new_product and in the DAG
creation_metadata. If the same metadata element appears in both the file and in the DAG, the value
appearing in the DAG takes precedence and will be used for the nomination. Note that it is implementation
dependent whether the server “edits” products submitted with conflicting metadata i.e a server may choose
NOT to edit these products and thus serve out products with metadata that doesn’t match the metadata in
the catalog. The definition of the metadata elements (their names and acceptable values or ranges, whether
mandatory or optional and their mapping into and out of various file formats that may be nominated) to be
described in the file or in the DAG are defined in the appropriate GIAS profile. The client also describes any
properties that further refine, effect or amplifies this Request by supplying their names and values in the
PropertyList properties. (The properties that are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return a reference to a
CreateRequest object.

 The standard exception identifier BadLocation will be returned if the client supplies a location description
which is syntactically invalid, incomplete or specifies a location unknown or inaccessible by the
CreationMgr. This does not require the CreationMgr to determine the validity of the user_name - password
combination specified in location or the availability of space at location to return successfully. The
standard exception identifier UnknownCreationAttribute will be returned if the client has supplied a
metadata element in the DAG creation_metadata that is unknown or unsupported by this CreationMgr.
Note that a server will ignore unknown attributes in a nominated file. The standard exception identifier
BadCreationAttributeValue will be returned if the client supplies a metadata element, whether in a file or in
the DAG creation_metadata, with an inappropriate or invalid value.. The standard exception identifier
UnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this CreationMgr. The standard exception identifier BadPropertyValue is returned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property.

2.3.8.2. create_metadata

 CreateMetaDataRequest create_metadata (in UCO::DAG
creation_metadata, in ViewName view_name, in
RelatedFileList related_files, in PropertyList
properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

57

 This operation allows a client to nominate the metadata of a data set or product for inclusion in a library(s)
without supplying the data set or product itself. The client nominates the metadata by supplying all
metadata elements in the DAG creation_metadata. The client also indicates which view this metadata
pertains to by supplying the name of the relevant view in view_name . The client also supplies any related
files by providing a RelatedFileList which contains the file location and the file relationship. (See section
2.2.2.8 for the description of the RelatedFileList) The client also describes any properties that further refine,
effect or amplifies this Request by supplying their names and values in the PropertyList properties. (The
properties that are available or applicable to this operation are defined in the appropriate GIAS profile.) A
successful invocation of this operation will return a reference to a CreateMetaDataRequest object.

 The standard exception identifier UnknownCreationAttribute will be returned if the client has supplied a
metadata element in the DAG creation_metadata that is unknown or unsupported by this CreationMgr. The
standard exception identifier BadCreationAttributeValue will be returned if the client supplies a metadata
element in the DAG creation_metadata with an inappropriate or invalid value. The standard exception
identifier UnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this CreationMgr. The standard exception identifier BadPropertyValue is returned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property.

2.3.8.3. create_association

 CreateAssociationRequest create_association(in string
assoc_name,

 in UID::Product view_a_object,

 in UID::ProductList view_b_objects,

 in UCO::NameValueList assoc_info)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to create an association of a specified type between a set of Products that
exist in a Library. The client identifies the desired association in assoc_name , the Product which has this
association in view_a_object and the Product(s) to be associated with the view_a_object in the ProductList
view_b_objects and the metadata that describes this association in assoc_info . This method will return a
CreateAssociationRequest reference which can be used to monitor the status of this Request.

 The standard exception identifier InvalidCardinality will be raised if the number of Products in the
ProductList view_b_objects does not match the cardinality of the association assoc_name. The standard
exception identifier UnknownAssociation will be raised if the value of assoc_name is unknown to the
CreationMgr. The standard exception identifier InvalidObject will be raised if one or more of the Products
identified are inappropriate for the association requested.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

58

2.3.9. UpdateMgr

 interface UpdateMgr: LibraryManager, RequestManager

 {

void set_lock(in UID::Product lockedProduct)
raises (

UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 UpdateRequest update (in ViewName view, in
UCO::UpdateDAGList changes, in RelatedFileList
relfiles, in PropertyList properties)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 UpdateByQueryRequest update_by_query(in UCO::NameValue
updated_attribute,

 in Query bqs_query,

 in PropertyList
properties)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 void release_lock(in UID::Product lockedProduct)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 void delete_product(in UID::Product prod)
raises(UCO::InvalidInputParameter,

UCO::ProcessingFault, UCO::SystemFault);

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

59

 The UpdateMgr provides the capability for a client to modify existing catalog entries.

2.3.9.1. set_lock

 void set_lock(in UID::Product lockedProduct)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation locks a Product to allow it to be safely updated. The Product reference for the Product to be
locked is provided in the parameter lockedProduct. Attempts to lock a Product which is already locked will
generate a LockUnavailable standard exception identifier.

2.3.9.2. update

 UpdateRequest update (in ViewName view, in
UCO::UpdateDAGList changes, in RelatedFileList
relfiles, in PropertyList properties)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to modify existing catalog entries. The entries to be modified are first retrieved
via the ProductMgr::get_parameters operation. (see section 2.3.11. ProductMgr) The desired modifications
are described by providing the type of view that is being updated along with an UpdateDAGList that
contains the entries with the modified values. (see the UCOS specification for the design of the
UpdateDAGList) The UpdateDAGList, containing the new entries, is provided in the parameter changes.
The client also supplies any updated related files in relfiles. Note that in the case where related files are
being updated only one catalog entry (Product) can be updated per invocation. The client also describes
any properties that further refine, effect or amplifies this Request by supplying their names and values in the
PropertyList properties. (The properties that are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return a reference to an
UpdateRequest object. A successful invocation of this operation also releases the lock on the updated
catalog entries.

 The standard exception identifier NonUpdateableAttribute is returned if the client attempts to modify a
non-updateable attribute. The standard exception identifier UnsafeUpdate is returned if the client attempts
to update entries that are not locked. The standard exception identifier ProductLocked is returned if the
client attempts to update entries that are locked by another client.

2.3.9.3 update_by_query

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

60

 UpdateByQueryRequest update_by_query(in UCO::NameValue
updated_attribute,

 in Query bqs_query,

in PropertyList properties)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to modify existing catalog entries that match a specific query. The entries to
be modified are defined as those that match the query defined by the parameter bqs_query. The desired
modifications are described by providing a name value pair (updated_attribute) that contains the name of
the attribute to be changed and its new value. The client also describes any properties that further refine,
effect or amplifies this Request by supplying their names and values in the PropetryList properties. (The
properties that are available or applicable to this operation are defined in the appropriate GIAS profile.) A
successful invocation of this operation will return a reference to an UpdateByQueryRequest object.

 The standard exception identifier NonUpdateableAttribute is returned if the client attempts to modify a non-
updateable attribute. The standard exception identifier BadUpdateAttribute is returned if the attribute in
updated_attribute is unknown. The standard exception identifier LockUnavailable is returned if the items to
be modified cannot be safely locked prior to modification. The standard exception identifier
UnknownViewName is returned if the data view specified is unknown. The standard exception identifier
BadQuery is returned if the query specified is malformed. The standard exception identifier
BadQueryAttribute is returned if one or more of the attributes in the query is unknown. The standard
exception identifier BadQueryValue is returned if one or more of the attributes in the query have an
inappropriate value.The standard exception identifier UnknownProperty is returned if one or more of the
properties specified in properties is unknown. The standard exception identifier BadPropertyValue is
returned if one or more of the values of properties specified in properties is inappropriate.

2.3.9.4. release_lock

 void release_lock(in UID::Product lockedProduct)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation manually releases a lock that has been placed on a Product. The Product reference for the
locked Product is provided in the parameter lockedProduct. Attempts to release a lock on a Product which
is not locked will be silently ignored.

2.3.9.5. delete_product

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

61

 void delete_product(in UID::Product prod)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation is used to delete a Product. Attempts to delete a Product which is locked will raise the
ProductLocked standard exception identifier.

2.3.10. CatalogMgr

 interface CatalogMgr:LibraryManager, RequestManager

 {

 SubmitQueryRequest submit_query (

 in Query aQuery,

 in UCO::NameList result_attributes,

 in SortAttributeList sort_attributes,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 HitCountRequest hit_count (in Query aQuery, in
PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

62

 The CatalogMgr allows a client to submit queries to search the catalog of holdings of a GIAS Library. The
operations defined in the CatalogMgr interface are described in the following subsections.

 2.3.10.1. submit_query

 SubmitQueryRequest submit_query (

 in Query aQuery,

 in UCO::NameList result_attributes,

 in SortAttributeList sort_attributes,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to submit a query to search a catalog of products (The specific data views
available and acceptable to a CatalogMgr are available through the DataModelMgr.) The query, which
defines the selection criteria for the products of interest as well as the view of interest, is defined by the
Query aQuery. The format of this query is defined by the Boolean Query Syntax (BQS) (See chapter 4). The
client indicates the attributes desired in the results in the NameList result_attributes. The client also
indicates any desired sorting by including a SortAttribute for each attribute to be sorted in the element
sort_attributes. The format for the attributes used in the query, result attributes and sort attributes is the
same and are defined by application of a rule defined in Chapter 4. The client also describes any properties
that further refine, effect or amplifies this Request by supplying their names and values in the PropertyList
properties. (The properties that are available or applicable to this operation are defined in the appropriate
GIAS profile.) A successful invocation of this operation will return a reference to a SubmitQueryRequest
object.

 The standard exception identifier UnknownViewName will be returned if the client has supplied a data view
unknown or unsupported by this CatalogMgr. The standard exception identifier BadQuery will be returned
if the Query specified by aQuery is syntactically invalid. The standard exception identifier
BadQueryAttribute will be returned if the query contains an attribute unknown to the CatalogMgr. The
standard exception identifier BadQueryValue is returned if the client has supplied one or more values for
query attributes which are inappropriate or exceed the allowed or expected values of that attribute.The
standard exception identifier UnknownProperty will be returned if the client has supplied one or more
properties unknown or unsupported by this CatalogMgr. The standard exception identifier
BadPropertyValue is returned if the client has supplied one or more values for properties which are
inappropriate or exceed the allowed or expected values of that property.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

63

2.3.10.3. hit_count

 HitCountRequest hit_count (in Query aQuery, in
PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to determine the number of results (“hits”) that would be returned from a
particular query. The operation parameters, properties and exceptions for this operation are identical in form
and meaning to those of the submit_query operation defined above. A successful invocation of this
operation returns a reference to a HitCountRequest object.

2.3.11. ProductMgr

 interface ProductMgr:LibraryManager,AccessManager

 {

 GetParametersRequest get_parameters (in UID::Product
product,
 in UCO::NameList
desired_parameters,
 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 RelatedFileTypeList get_related_file_types(in
UID::Product prod)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 GetRelatedFilesRequest get_related_files(

 in UID::ProductList products,

 in UCO::FileLocation location,

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

64

 in RelatedFileType type,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

 The ProductMgr interface provides operations that allow a client to determine characteristics about a
specific data set or product. The operations defined in the ProductMgr interface are described in the
following subsections.

2.3.11.1. get_parameters

 GetParametersRequest get_parameters

 (in UID::Product product,

 in UCO::NameList
desired_parameters,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a client to submit a Request to determine the characteristics of a specific data set or
product. The client supplies a reference to the data set of interest in Product product. The client also
indicates which parameters are of interest in the NameList desired_parameters. The client also describes
any properties that further refine, effect or amplifies this Request by supplying their names and values in the
PropertyList properties. (The properties that are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return a reference to a
GetParametersRequest object.

 The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to this ProductMgr.The standard exception identifier UnknownProperty will be returned
if the client has supplied one or more properties unknown or unsupported by this ProductMgr. The
standard exception identifier BadPropertyValue is returned if the client has supplied one or more values for
properties, which are inappropriate or exceed the allowed or expected values of that property. The standard

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

65

exception identifier LockUnavailable is returned if the product is already locked or the client is not allowed
to lock this Product.

2.3.11.2. get_related_file_types

 RelatedFileTypeList get_related_file_types(in
UID::Product prod)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation is used to obtain a list of acceptable RelatedFileType values for each Product. These values
are used with the get_related_files operation (see section 2.3.11.3 below). The standard exception identifier
UnknownProduct is returned if the client supplied a Product which is unknown or unusable by this
ProductMgr.

2.3.11.3. get_related_files

 GetRelatedFilesRequest get_related_files(

 in UID::ProductList products,

 in UCO::FileLocation location,

 in RelatedFileType type,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This selector operation allows a client to submit a Request for a specified type of related file/dataset for a set
of products. The client supplies a reference to the set of data sets of interest in ProductList products. The
location in which the related files are to be placed is described in the parameter location. This FileLocation
data type is populated to describe the path to the directory level. The field file_name of this parameter is left
blank (empty string). The client also indicates the type of related file desired in the parameter type. The
acceptable values for this parameter can be determined via the get_related_file_types operation (see section
2.3.11.2. above) .The client also describes any properties that further refine, effect or amplifies this Request
by supplying their names and values in the PropertyList properties. (The properties that are available or
applicable to this operation are defined in the appropriate GIAS profile.) A successful invocation of this
operation will return a reference to a GetRelatedFilesRequest object.

 The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to this ProductMgr. The standard exception identifier BadLocation will be returned if

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

66

the client supplied a location that was incomplete or inaccessible. The standard exception identifier
BadFileType will be returned if the client supplied a RelatedFileType that is not valid for the Product
requested.The standard exception identifier UnknownProperty will be returned if the client has supplied one
or more properties unknown or unsupported by this ProductMgr. The standard exception identifier
BadPropertyValue is returned if the client has supplied one or more values for properties, which are
inappropriate or exceed the allowed or expected values of that property.

2.3.12. IngestMgr

 interface IngestMgr:LibraryManager,RequestManager

 {

 // FileLocation contains a directory

 IngestRequest bulk_pull(in UCO::FileLocation
location, in PropertyList property_list)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 // FileLocation contains a directory

 IngestRequest bulk_push(in Query aQuery, in
UCO::FileLocation location, in PropertyList
property_list)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

 The IngestMgr provides operations that allow a Library to exchange large amounts of metadata with another
library. The exchange takes place by exchanging (pushing or pulling) a set of files containing the metadata
between the Libraries. The format of the files exchanged and the mapping of those file formats into and out
of the Library’s implementation are outside the scope of the GIAS. The details of this file format and its
mappings will be detailed in the appropriate GIAS profile. The operations defined in the Request interface
are described in the following subsections.

2.3.12.1. bulk_push

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

67

 // FileLocation contains a directory

 IngestRequest bulk_push(in Query aQuery, in
UCO::FileLocation location, in PropertyList
property_list)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation places a Request to push all metadata concerning a specified data view. The initiating Library
also supplies a query to further refine the desired metadata. Both of these elements are supplied in the in
parametere aQuery. The format of the query is defined by the BQS (see chapter 4). The initiating library
describes any properties that further refine, effect or amplify this Request by supplying their names and
values in the PropertyList property_list. (The properties that are available or applicable to this operation are
defined in the appropriate GIAS profile.).

 The standard exception identifier UnknownViewName will be returned if the initiating Library has supplied a
data view unknown or unsupported by this IngestMgr. The standard exception identifier BadLocation will
be returned if the client supplies a location description which is syntactically invalid, incomplete or specifies
a location unknown or inaccessible by the IngestMgr. This does not require the IngestMgr to determine the
validity of the user_name - password combination specified in location or the availability of space at
location to return successfully.The standard exception identifier UnknownProperty will be returned if the
client has supplied one or more properties unknown or unsupported by this IngestMgr. The standard
exception identifier BadPropertyValue is returned if the client has supplied one or more values for
properties, which are inappropriate or exceed the allowed or expected values of that property.

2.3.12.2. bulk_pull

 // FileLocation contains a directory

 IngestRequest bulk_pull(in UCO::FileLocation
location, in PropertyList property_list)

 raises(UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 This operation allows a Library (the initiating Library) to notify another Library (the receiving library) that a
block of metadata is available to be ingested. The initiating Library also describes any properties that
further refine, effect or amplify this Request by supplying their names and values in the PropertyList
property_list. (The properties that are available or applicable to this operation are defined in the appropriate
GIAS profile.) A successful invocation of this operation will return a reference to an IngestRequest object.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

68

 The standard exception identifier BadLocation will be returned if the client supplies a location description
which is syntactically invalid, incomplete or specifies a location unknown or inaccessible by the IngestMgr.
This does not require the IngestMgr to determine the validity of the user_name - password combination
specified in location or the availability of space at location to return successfully. The standard exception
identifierUnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this IngestMgr. The standard exception identifier BadPropertyValue is returned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property

2.3.13. QueryOrderMgr

 interface QueryOrderMgr:LibraryManager,
RequestManager

 {

 EventList get_event_descriptions()

 raises (UCO::ProcessingFault,
UCO::SystemFault);

 SubmitQueryOrderRequest submit_query_order (

 in Query aQuery,

 in QueryLifeSpan lifespan,

 in OrderType o_type,

 in QueryOrderContents order,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

 The QueryOrderMgr allows a client to place a query with a Library that will monitor the Library for existing
(immediate orders) or new products arriving in the Library (standing orders) and then automatically deliver
these products to the requestor. The details of the method to submit a standing order (using the operation

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

69

submit_query_order) are identical to submitting a CatalogMgr query. (See either of this query operation of
the CatalogMgr Section 2.3.10). In addition, a query order is defined by two additional parameters: a flag
which defines whether this is an immediate or standing order and a lifespan which is described by including
a completed QueryLifeSpan structure (note that for immediate orders, the QueryLifeSpan is ignored).

In addition to submitting a query, a client must submit a QueryOrderContents structure that describes the
details of how the products are to be delivered. The information contained in the QueryOrderContents will be
applied to all products generated by the order. The client invokes the operation submit_query_order, passing
in the query and order and receives a SubmitQueryOrderRequest object to track the order. The client
establishes a QueryOrder in exactly the same way as establishing a StandingQuery, with the addition of a
QueryOrderContents, which defines the delivery details. As hits are generated against the query, the
associated products are delivered as defined in the order. Calling complete on the SubmitQueryOrderRequest
can be used to determine if the order has been completed or the client can ignore the status of the order.

2.3.13.1 get_event_descriptions

EventList get_event_descriptions()

raises (UCO::ProcessingFault, UCO::SystemFault);

 get_event_descriptions returns a list of events that can be used by the client in the lifespan parameter of
submit_query_order to set the details of the lifetime of a query such as start, duration, and end.

2.3.13.2 submit_query_order

SubmitQueryOrderRequest submit_query_order (

in Query aQuery,

in QueryLifeSpan lifespan,

in OrderType o_type,

in QueryOrderContents order,

in PropertyList properties)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

70

This operation allows a client to establish a simple query with a Library that will monitor the Library for
existing (“immediate” orders) or new products arriving in the Library (“standing” orders) and then
automatically deliver these products to the requestor. The basic parameters, semantics, and standard
exception identifiers for this operation are identical to those for submitting a CatalogMgr query. (See the
submit_query operation of the CatalogMgr in Section 2.3.10.) Additional parameters provide specific details
for establishing the lifespan, type, and delivery details of this query order. The parameter OrderType o_type
provides a flag that defines whether this is an “immediate” or “standing” order. For “immediate” orders, the
query is performed just once on the Library. For “standing” orders, the parameter QueryLifeSpan lifespan
determines the time period that the query is to be run. (Note: For “immediate” orders, the lifespan parameter
is ignored.) The parameter QueryOrderContents order describes the details of how the requested products
are to be delivered.

The standard exception identifier InvalidEvent is returned if an event contained in the lifespan parameter is
inappropriate or unknown. The standard exception identifier ImplementationLimit is returned if a submitted
value in the order parameter exceeds this Manager’s capabilities. These limits are implementation specific.

2.3.14. VideoMgr

//interface VideoMgr : LibraryManager, AccessManager
{

 //};

The VideoMgr is intended to provide operations that allow a client to access a video data set as a temporal
stream as well as a geospatial data set. The requirements and design of this interface and operations are
TBR.

2.3.15. Request (j/NPS)

interface Request

{

UCO::RequestDescription get_request_description ()

raises (UCO::ProcessingFault, UCO::SystemFault);

void set_user_info (in string message)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

71

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

UCO::Status get_status ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

DelayEstimate get_remaining_delay()

raises (UCO::ProcessingFault,
UCO::SystemFault);

void cancel ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

CallbackID register_callback (in CB::Callback
acallback)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

void free_callback (in CallbackID id)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

RequestManager get_request_manager ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The Request interface is an abstract interface that defines those operations that are common to Request
objects. Most operations of a RequestManager return a reference to a specialized Request object. All
specialized Request objects are derived (inherited) from Request. This interface defines the operations in the
following subsections.

2.3.15.1. get_request_description (j/NPS)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

72

UCO::RequestDescription get_request_description()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This selector operation returns a populated RequestDescription structure that describes the Request.

2.3.15.2. set_user_info

void set_user_info (in string message)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This modifier operation allows a client to provide information that describes the Request. The client supplies
this information, in the form of a string in message. A successful invocation of this operation associates the
client’s message with the Request. This client-supplied information can be accessed in the user_info
element of the RequestDescription structure returned by the get_request_description operation (see
above).

The ImplementationLimit standard exception identifier will be returned if the client supplies a message that
exceeds the maximum length allowed by the implementation. This maximum length is implementation
dependent.

2.3.15.3. get_status (j/NPS)

UCO::Status get_status ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This selector operation returns the current status of the Request. A successful invocation returns a Status
structure (see the UCO document for details).

2.3.15.4. cancel

void cancel ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

73

This modifier operation is used to terminate further processing of a Request. After successful invocation of
this operation, all current and future processing associated with this Request is terminated.

Before After

COMPLETED COMPLETED

IN_PROGRESS CANCELED

ABORTED ABORTED

CANCELED CANCELED

PENDING CANCELED

SUSPENDED CANCELED

RESULTS_AVAI
LABLE

CANCELED

2.3.15.5. register_callback (j/NPS)

CallbackID register_callback (in CB::Callback
acallback)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to register a Callback object with a Request. The purpose of a Callback object
is to provide a mechanism to allow the Request to notify the client that processing of a Request has
transitioned into a state which is specified to trigger a Callback. The states which trigger a Callback are
specific to each concrete Request and are defined in Appendix G. A client can register zero or more
Callback objects with a Request. The client indicates the Callback object to be registered by supplying a
reference to a Callback object in a callback. A successful invocation of this operation returns a CallbackID
that uniquely identifies that instance of Callback. The details of this CallbackID are defined in the
appropriate GIAS profile. Note that registering the SAME Callback object twice results in two callbacks
being registered with different CallbackIDs. Following successful invocation of this operation the Callback
specified will be associated with this Request (registered). When this Request reaches a state which triggers
a Callback, the appropriate operation(s) on the specified Callback object will be invoked. (See section 3 for
details of the operations invoked on the Callback object). Note that if a Callback is registered with a Request
which is already in a state that triggers a Callback that Callback will be triggered immediately.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

74

The standard exception identifier UnknownCallBack will be returned if the client supplies a reference to a
Callback object that is unknown or unreachable by the Request.

2.3.15.6. free_callback (j/NPS)

void free_callback (in CallbackID id)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to remove a Callback previously registered with a Request. The client supplies
a reference to the Callback that is to be de-registered. Following successful invocation of this operation,
the Callback specified will no longer be registered with this Request.

The standard exception identifier UnknownCallBack will be returned if the client supplies a reference to a
Callback object that is unknown or unreachable by the Request. The standard exception identifier
UnregisteredCallBack will be returned if the client attempts to free a Callback, which has not previously
been registered with this Request.

2.3.15.7. get_request_manager

RequestManager get_request_manager ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to discover which RequestManager is managing the Request. A successful
invocation of this operation returns a reference to the RequestManager that is managing this Request. This
reference can be narrowed (cast) into a more concrete type.

2.3.15.8. get_remaining_delay

DelayEstimate get_remaining_delay ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation returns an estimate in seconds (time_delay field of the returned DelayEstimate structure)
until the Request reaches the COMPLETE (or the RESULTS_AVAILABLE state if applicable to the Request)
state. The delay is valid only if the valid_time_delay component of the DelayEstimate is true. If the
valid_time_delay is false, the time_delay should be ignored by the client.

2.3.16. CreateMetaDataRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

75

interface CreateMetaDataRequest:Request

 {

 UCO::State complete (out UID::Product new_product)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

This Request is returned by the operation create_metadata of the CreationMgr. This Request defines the
following operation:

2.3.16.1. complete

UCO::State complete (out UID::Product new_product)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the CreateMetaDataRequest. It returns an identifier
in the form of a Product for the newly created Product. It also returns a State indicating details of the
completed operation. See Appendix G for a description of the state transitions defined for the Request.

2.3.17. SetAvailabilityRequest

interface SetAvailabilityRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

This Request is returned by the operation set_availability of the AccessMgr. This Request defines the
following operation:

2.3.17.1. complete

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

76

UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the SetAvailabilityRequest. This operation blocks
until the requested products are placed in the requested UseMode. It also returns a State indicating details
of the completed operation. See Appendix G for a description of the state transitions defined for the
Request.

2.3.18. GetRelatedFilesRequest

interface GetRelatedFilesRequest:Request

 {

 UCO::State complete (out UCO::NameList locations)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

This Request is returned by the operation get_related_files of the ProductMgr. This Request defines the
following operation:

2.3.18.1. complete

UCO::State complete (out UCO::NameList locations)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the GetRelatedFilesRequest. This operation blocks
until the requested related files have been made available. It returns a sequence of names in the parameter
locations, which holds the file names of the related files. The names in this sequence are in the same order
as specified in the ProductList submitted in the get_related_files operation. It also returns a State indicating
details of the completed operation. See Appendix G for a description of the state transitions defined for the
Request.

2.3.19. CreateRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

77

interface CreateRequest:Request

 {

 UCO::State complete (out UID::ProductList
new_products)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

The CreateRequest is returned by invocations of the create operation of the CreationMgr. This operation
defined in the CreateRequest interface, is described in the following subsection.

2.3.19.1. complete

UCO::State complete (out UID::ProductList
new_products)

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to complete processing of the CreateRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation returns a
ProductList containing the references to the newly created product or the composite product for multi-part
products. It also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.20. UpdateRequest

interface UpdateRequest:Request

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

78

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

};

The UpdateRequest is returned by invocations of the UpdateMgr::update operation. It is used to complete
the processing of an update of a catalog entry.

2.3.20.1. complete

UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation completes the processing of a catalog update operation. It returns the status of the update
operation. See Appendix G for a description of the state transitions defined for the Request.

2.3.21. SubmitQueryRequest

interface SubmitQueryRequest:Request

 { void set_number_of_hits (in unsigned long hits)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_DAG_results (out QueryResults
results);

raises (UCO::ProcessingFault,
UCO::SystemFault);

UCO::State complete_stringDAG_results (out
UCO::StringDAGList results);

raises (UCO::ProcessingFault,
UCO::SystemFault);

UCO::State complete_XML_results (out UCO::XMLDocument
results)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

79

raises (UCO::ProcessingFault, UCO::SystemFault)

 };

The SubmitQueryRequest is returned by invocations of the submit_query operation of the CatalogMgr. It
provides operations to retrieve the results of the submitted query in three forms: as a DAG, as a StringDAG
or as a XMLDocument. This interface defines the following operations:

2.3.21.1. set_number_of_hits

void set_number_of_hits (in unsigned long hits)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to set the number of results (“hits”) that are returned by invocations of the
operation complete (see below). This operation also sets the number of hits accumulated by this
SubmitQueryRequest before a Callback is triggered.

2.3.21.2. complete_DAG_results

UCO::State complete_DAG_results (out QueryResults
results)

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to complete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of_hits has been accumulated or all results have been
processed. A successful invocation of this operation returns a QueryResults structure containing results
from the query. Subsequent invocations of this operation can be used to retrieve any remaining results.
Once a set of results have been returned from this operation they are no longer accessible, that is, there is
no mechanism to retrieve the same set of results a second time. It is the client’s responsibility to hold any
retrieved results. The number of results returned in this structure per invocation is determined by the value
set in an invocation of set_number_of_hits (see above). A retrieval that returns a number of results less
than the value previously set by set_number_of_hits indicates that all results have been retrieved. If
set_number_of_hits has not been called prior to the invocation of complete, the number of results returned
in the QueryResults structure is determined by a default value, which is implementation dependent. See
Appendix G for a description of the state transitions defined for the Request.

2.3.21.3. complete_stringDAG_results

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

80

UCO::State complete_stringDAG_results (out
UCO::StringDAGList results)

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to complete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of_hits has been accumulated or all results have been
processed. A successful invocation of this operation returns a UCO::StringDAGList structure containing
results from the query. Subsequent invocations of this operation can be used to retrieve any remaining
results. Once a set of results have been returned from this operation they are no longer accessible, that is,
there is no mechanism to retrieve the same set of results a second time. It is the client’s responsibility to
hold any retrieved results. The number of results returned in this structure per invocation is determined by
the value set in an invocation of set_number_of_hits (see above). A retrieval that returns a number of
results less than the value previously set by set_number_of_hits indicates that all results have been
retrieved. If set_number_of_hits has not been called prior to the invocation of complete, the number of
results returned in the StringDAGList structure is determined by a default value, which is implementation
dependent. See Appendix G for a description of the state transitions defined for the Request

2.3.21.4. complete_XML_results

UCO::State complete_XML_results (out UCO::XMLDocument
results)

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation allows a client to complete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of_hits has been accumulated or all results have been
processed. A successful invocation of this operation returns a UCO::XMLDocument structure containing
results from the query. Subsequent invocations of this operation can be used to retrieve any remaining
results. Once a set of results have been returned from this operation they are no longer accessible, that is,
there is no mechanism to retrieve the same set of results a second time. It is the client’s responsibility to
hold any retrieved results. The number of results returned in this structure per invocation is determined by
the value set in an invocation of set_number_of_hits (see above). A retrieval that returns a number of
results less than the value previously set by set_number_of_hits indicates that all results have been
retrieved. If set_number_of_hits has not been called prior to the invocation of complete, the number of
results returned in the XMLDocument structure is determined by a default value, which is implementation
dependent. See Appendix G for a description of the state transitions defined for the Request.

2.3.22. SubmitStandingQueryRequest

interface SubmitStandingQueryRequest:Request

 {

 void set_number_of_hits (in unsigned long hits)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

81

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_number_of_hits()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 unsigned long get_number_of_hits_in_interval(in
unsigned long interval)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_number_of_intervals()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 void clear_all()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 void clear_intervals(in unsigned long
num_intervals)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 void clear_before(in UCO::Time relative_time)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 void pause()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 void resume()

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

82

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::AbsTime get_time_last_executed()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::AbsTime get_time_next_execution()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete_DAG_results (out QueryResults
results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete_stringDAG_results (out
UCO::StringDAGList results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete_XML_results (out
UCO::XMLDocument results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The SubmitStandingQueryRequest is returned by invocations of the submit_standing_query operation of
the StandingQueryMgr.

2.3.22.1. set_number_of_hits

void set_number_of_hits (in unsigned long hits)

 raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

83

This operation allows a client to set the number of results (“hits”) that are returned by invocations of the
operation complete (see below). This operation also sets the number of hits accumulated by this Request
before a Callback is triggered.

2.3.22.2. get_number_of_hits

unsigned long get_number_of_hits()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation returns the current total number of hits collected by this Request.

2.3.22.3. get_number_of_hits_in_interval

unsigned long get_number_of_hits_in_interval(in
unsigned long interval)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation returns the number of hits in the specified interval.

2.3.22.4. get_number_of_intervals

unsigned long get_number_of_intervals()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation returns the number of intervals for which this Request has collected hits.

2.3.22.5. clear_all

void clear_all()

raises (UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

84

This operation clears all hits currently held by this Request.

2.3.22.6. clear_intervals

void clear_intervals(in unsigned long num_intervals)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation clears all hits in the specified interval.

2.3.22.7. clear_before

void clear_before(in UCO::Time relative_time)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

This operation clears all hits collected before the specified time.

2.3.22.8. pause

void pause()

raises (UCO::ProcessingFault, UCO::SystemFault);

 This operation suspends processing of the Request.

2.3.22.9. resume

void resume()

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation resumes processing of a suspended Request.

2.3.22.10 get_time_last_executed and get_time_next_execution

UCO::AbsTime get_time_last_executed()

raises (UCO::ProcessingFault, UCO::SystemFault);

UCO::AbsTime get_time_next_execution()

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

85

raises (UCO::ProcessingFault, UCO::SystemFault);

These operations allow access to the time of the last performed execution of this standing query and the
time of the next scheduled execution of this standing query.

The standard exception identifier InvalidEvent will be raised if the standing query has not yet been run
(get_time_last_executed) or will not run again (get_time_next_execution).

2.3.22.11 complete_DAG_results

UCO::State complete_DAG_results (out QueryResults
results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reaches a COMPETE or RESULTS_AVAILABLE state. A successful
invocation of this operation returns a “results” value which represents a DAGList. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.3.22.12 complete_stringDAG_results

UCO::State complete_stringDAG_results (out
UCO::StringDAGList results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reaches a COMPETE or RESULTS_AVAILABLE state. A successful
invocation of this operation returns a “results” value which represents a StringDAGList. It also returns a
State indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.3.22.13 complete_XML_results

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

86

UCO::State complete_XML_results (out UCO::XMLDocument
results)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reaches a COMPLETE or RESULTS_AVAILABLE state. A successful
invocation of this operation returns a “results” value in the form of an XMLDocument. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.3.23. HitCountRequest

interface HitCountRequest:Request

 {

 UCO::State complete (out unsigned long
number_of_hits)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The HitCountRequest is returned by invocations of the hit_count operation of the CatalogMgr. This
operation defined in the HitCountRequest interface is described in the following subsection.

2.3.23.1. complete

UCO::State complete (out unsigned long
number_of_hits)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

87

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the HitCountRequest. This operation blocks until
the requested operation reaches a COMPETE state. A successful invocation of this operation returns a
value that indicates the total number of results (“hits”) that would be returned if the query was executed. It
also returns a State indicating details of the completed operation. See Appendix G for a description of the
state transitions defined for the Request.

2.3.24. GetParametersRequest

interface GetParametersRequest:Request

 {

 UCO::State complete (out UCO::DAG parameters)

raises (UCO::ProcessingFault,
UCO::SystemFault);

UCO::State complete_StringDAG (out UCO::StringDAG
parameters)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The ParametersRequest is returned by invocations of the get_parameters operation of the ProductMgr. This
operation defined in the GetParametersRequest interface is described in the following subsection.

2.3.24.1. complete

UCO::State complete (out UCO::DAG parameters)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the ParametersRequest. This operation blocks until
the requested operation reaches a COMPLETE state. A successful invocation of this operation returns a

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

88

UCO::DAG structure that contains the properties and current values of those properties of the product or
data set requested. It also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.24.2. complete

UCO::State complete_StringDAG (out UCO::StringDAG
parameters)

raises (UCO::ProcessingFault,
UCO::SystemFault);

The details of this operation are identical to those of the complete operation described above except that
this operation returns the results as a String DAG.

2.3.25. IngestRequest

interface IngestRequest:Request

 {

UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The IngestRequest is returned by invocations of the bulk_pull and bulk_push operations of the IngestMgr.
This operation defined in the IngestRequest interface is described in the following subsection.

2.3.25.1. complete

UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

89

This operation allows a client to complete processing of the IngestRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation indicates that the
files containing the metadata to be exchanged are available. For the bulk_pull operation this indicates that
the metadata file has been delivered to the location specified and is ready to be ingested by the pulling
Library. For the bulk_push operation this indicates that the metadata file has been found by the receiving
Library at the location specified. This operation does NOT indicate that the receiving Library has
successfully ingested the metadata file. It merely indicates successful transfer of and access to the metadata
file. See Appendix G for a description of the state transitions defined for the Request.

2.3.26. OrderRequest

interface OrderRequest:Request

 {

 UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The OrderRequest is returned by an invocation of the order operation of the OrderMgr. The operation
defined in the OrderRequest interface is described in the following subsection.

2.3.26.1. complete

UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the OrderRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation indicates that the
client’s order is available. The parameter prods contains the package and its contents as delivered. This
operation also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.27 SubmitQueryOrderRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

90

interface SubmitQueryOrderRequest:Request

 {

 void pause()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 void resume()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete_list (out DeliveryManifestList
prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

This SubmitQueryOrderRequest is returned by the operation submit_query_order of the QueryOrderMgr.
This Request defines the following operations:

2.3.27.1 Pause

void pause()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation temporarily suspends the Request.

2.3.27.2 Resume

This operation causes a suspended Request to continue.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

91

void resume()

raises (UCO::ProcessingFault,
UCO::SystemFault);

2.3.27.3 Complete_list

UCO::State complete_list (out DeliveryManifestList
prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation blocks until the submit_query_order reaches a COMPLETE state, indicating that the order is
ready. The parameter prods contains the package(s) and their contents as delivered. This
DeliveryManifestList contains the description of all packages which have been delivered from this
QueryOrder Request since the last time the complete operation was called, which may include deliveries
from one or more intervals.That is, the contents of the DeliveryManifestList accumulates until the complete
operation is invoked, at which point the DeliveryManifestList is cleared and begins to accumulate again.
There is one DeliveryManifest in the DeliveryManifestList for each separate package delivered. See
Appendix G for a description of the state transitions defined for the Request.

2.3.27.4 Complete

UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation blocks until the submit_query_order reaches a COMPLETE state, indicating that the order is
ready. The parameter prods contains the package(s) and their contents as delivered. This DeliveryManifest
contains a concatenated description of all packages which have been delivered from this QueryOrder
Request since the last time the complete operation was called, which may include deliveries from one or
more intervals.That is, the contents of the DeliveryManifest accumulate until the complete operation is
invoked, at which point the DeliveryManifest contents are cleared and begins to accumulate again. See
Appendix G for a description of the state transitions defined for the Request.

2.3.28. CreateAssociationRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

92

interface CreateAssociationRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

The CreateAssociationRequest is returned by an invocation of the create_association operation of the
CreationMgr. The operation defined in this interface is described in the following subsection.

2.3.28.1. complete

UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the CreateAssociationRequest. This operation
blocks until the requested operation reaches a COMLETE state. A successful invocation of this operation
indicates that the client’s association has been successfully created. It also returns a State indicating details
of the completed operation. See Appendix G for a description of the state transitions defined for the
Request.

2.3.29. UpdateByQueryRequest

interface UpdateByQueryRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

93

The UpdateByQueryRequest is returned by an invocation of the update_by_query operation of the
UpdateMgr. The operation defined in this interface is described in the following subsection.

2.3.29.1. complete

UCO::State complete ()

raises (UCO::ProcessingFault,
UCO::SystemFault);

This operation allows a client to complete processing of the UpdateByQueryRequest. This operation blocks
until the requested processing has been performed or an error condition occurs. A successful invocation of
this operation indicates that the requested updates have been successfully performed. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.4. Exceptions
2.4.1. Exception Model

The GIAS specification uses the exception model that is defined in Section 2.4 of the UCO Specification.
This section defines a set of identifiers (string constants) that are used to identify the specific exception
conditions of the GIAS interfaces. As such, they would be used in the exception_name field of the
UCO::exception_details structure. When an exception that uses one of these standard identifiers is returned,
the boolean standard_exception field of the UCO::exception_details structure should be set to TRUE. The
UCO exception model defines three exceptions (InvalidInputParameter, ProcessingFault and SystemFault)
which each represent a broad category of possible error conditions. The GIAS-specific error conditions
defined below are grouped into one of these three categories.

2.4.2 InvalidInputParameter Exceptions (j/NPS)

2.4.2.1 BadAccessCriteria (j/NPS)

const string BadAccessCriteriaConst =
"BadAccessCriteria";

This exception indicates the client has supplied incomplete, invalid or otherwise unacceptable access
criteria. The exception_details structure will identify the unacceptable access criteria submitted.

2.4.2.2 BadAccessValue (j/NPS)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

94

const string BadAccessValueConst = “BadAccessValue”;

This exception indicates that one or more values supplied for the access criteria was missing, incorrect or
otherwise unacceptable. The exception_details structure will identify which access criteria element(s)
submitted were unacceptable.

2.4.2.3 BadCreationAttributeValue(j/NPS)

const string BadCreationAttributeValueConst =
“BadCreationAttributeValue”;

This exception indicates the client supplied a value for one or more creation attributes with an inappropriate
type or invalid value (i.e., exceeded the allowed or expected range). The exception_details structure will
contain an explanation containing the names of all the unacceptable creation attributes.

2.4.2.4 BadGeoRegion

const string BadGeoRegionConst = “BadGeoRegion”;

This exception indicates that a GeoRegion data structure supplied by the client is incomplete or describes a
region that is inappropriate for the processing requested (i.e., region is not contained in the requested
product).

2.4.2.5 BadLocation (j/NPS)

const string BadLocationConst = “BadLocation”;

This exception indicates the client supplied a FileLocation structure that is syntactically invalid, incomplete
or specifies a location unknown or inaccessible by the server.

2.4.2.6 BadPropertyValue (j/NPS)

const string BadPropertyValueConst =
“BadPropertyValue”;

This exception indicates the client supplied a value for one or more properties, which are inappropriate or
exceed the allowed or expected values of that property. The exception_details structure will contain an
explanation containing the names of all the unacceptable properties.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

95

2.4.2.7 BadQuery

const string BadQueryConst = “BadQuery”;

This exception indicates that a query submitted by the client has improper syntax. This would include
missing or mismatched delimiters, use of undefined operators or use of an operator inappropriate for an
attribute. See Chapter 4 for a description of the BNF that describes the syntax for queries.

2.4.2.8 BadQueryAttribute

const string BadQueryAttributeConst =
“BadQueryAttribute”;

This exception indicates the client supplied one or more attributes unknown or unsupported by the server.
The exception_details structure will contain the unacceptable attributes.

2.4.2.9 BadQueryValue

const string BadQueryValueConst = “BadQueryValue”;

This exception indicates the client supplied one or more values for query attributes, which are inappropriate
or exceed the allowed or expected values for that attribute. The exception_details structure will contain an
explanation containing the names of all the unacceptable attributes.

2.4.2.10 BadTime

const string BadTimeConst = “BadTime”;

This exception indicates the client supplied a time value that is incomplete or exceeds the allowed or
expected range of times. The exception_details structure will contain the unacceptable time value supplied.

2.4.2.11 BadUseMode

const string BadUseModeConst = “BadUseMode”;

This exception indicates the client requested a UseMode that is inappropriate or unsupported for the
product or conditions requested.

2.4.2.12 ImplementationLimit (j/NPS)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

96

const string ImplementationLimitConst =
“ImplementationLimit”;

This exception indicates the client requested an operation with a parameter that exceeds an implementation
specific limit for that parameter. The exception_details structure will contain the name of the parameter
exceeded.

2.4.2.13 UnknownCallBack (j/NPS)

const string UnknownCallBackConst =
“UnknownCallBack”;

This exception indicates the client supplied a reference to a Callback object that is unknown or unreachable
by the Request.

2.4.2.14 UnknownCreationAttribute (j/NPS)

const string UnknownCreationAttributeConst =
“UnknownCreationAttribute”;

This exception indicates the client supplied a creation attribute that is unknown or unsupported by the
server. The exception_details structure will contain an explanation containing the names of the entire
unknown or unsupported elements.

2.4.2.15 UnknownManagerType (j/NPS)

const string UnknownManagerTypeConst =
“UnknownManagerType”;

This exception indicates the client requested a Manager type, which was unknown or unsupported by this
implementation. The exception_details structure will contain an explanation containing the name of the
unknown or unsupported Manager type.

2.4.2.16 UnknownProduct

const string UnknownProductConst = “UnknownProduct”;

This exception indicates that the client requested a product reference unknown to the server.

2.4.2.17 UnknownProperty (j/NPS)

const string UnknownPropertyConst =
“UnknownProperty”;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

97

This exception indicates the client supplied one or more properties unknown or unsupported by the server.
The exception_details structure will contain an explanation containing the names of all the unacceptable
properties supplied.

2.4.2.18 UnknownRequest (j/NPS)

const string UnknownRequestConst = “UnknownRequest”;

This exception indicates the client supplied a reference to a Request that is unknown to the server.

2.4.2.19 UnknownUseMode

const string UnknownUseModeConst = “UnknownUseMode”;

This exception indicates the client supplied a UseMode unknown or unsupported by the server. The
exception_details structure will contain an explanation containing the name of the unacceptable UseMode
supplied.

2.4.2.20 UnregisteredCallBack (j/NPS)

const string UnregisteredCallbackConst =
“UnregisteredCallback”;

This exception indicates the client attempted an operation that requires a registered Callback with a
reference to a Callback that has not been previously registered.

2.4.2.21 BadOrder

const string BadOrderConst = “BadOrder”;

This exception indicates that an order placed by a client to a Library is not valid.

2.4.2.22 UnknownViewName

const string UnknownViewNameConst =
“UnknownViewName”;

This exception indicates that a specified view requested by a client is unknown by the Library.

2.4.2.23 UnknownEntity

const string UnknownEntityConst = “UnknownEntity”;

This exception indicates that a client-requested entity is unknown.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

98

2.4.2.24 NoValuesRequested

const string NoValuesRequestedConst =
“NoValuesRequested”;

This exception indicates that a client did not request any values.

2.4.2.25 UnsupportedConceptualAttribute

const string UnsupportedConceptualAttributeConst =
“UnsupportedConceptualAttribute”;

This exception indicates that a conceptual attribute specified in a Request is unsupported.

2.4.2.26 BadResultAttribute

const string BadResultAttributeConst =
“BadResultAttribute”;

This exception indicates that a Request specified a results attribute that is unsupported.

2.4.2.27 BadSortAttribute

const string BadSortAttributeConst =
“BadSortAttribute”;

This exception indicates that the sort attribute specified in the Request is unsupported.

2.4.2.28 NonUpdateableAttribute

const string NonUpdateableAttributeConst =
“NonUpdateableAttribute”;

This exception indicates an attempt to update an attribute which the client is not allowed to modify.

2.4.2.29 BadFileType

const string BadFileTypeConst = “BadFileType”;

This exception indicates the use of a RelatedFileType that is unknown or inappropriate for the context for
which it was used.

2.4.2.30 InvalidCardinality

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

99

const string InvalidCardinalityConst =
“InvalidCardinality”;

This exception indicates the mismatch of the cardinality defined in an association and the number of
products to be associated.

2.4.2.31 UnknownAssociation

const string UnknownAssociationConst =
“UnknownAssociation”;

This exception indicates the use of an association name that is unknown.

2.4.2.32 InvalidObject

const string InvalidObjectConst = “InvalidObject”;

This exception indicates the use of a object that is inappropriate in the attempted context.

2.4.2.33 UnknownCategory

const string UnknownCategoryConst =
“UnknownCategory”;

This exception indicates the use of a category that is inappropriate in the attempted context.

2.4.2.34 InvalidEvent

const string InvalidEventConst = “InvalidEvent”;

This exception indicates the use of an event that is inappropriate or unknown.

2.4.2.35 BadUpdateAttribute

const string BadUpdateAttributeConst =
“BadUpdateAttribute”;

This exception indicates an attempt to update an attribute that is inappropriate.

2.4.2.36 BadEmailAddress

const string BadEmailAddressConst =
“BadEmailAddress”;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

100

This exception indicates the client supplied an unusable email address.

2.4.3 ProcessingFault Exceptions (j/NPS)

2.4.3.1 ProductUnavailable

const string ProductUnavailableConst =
“ProductUnavailable”;

This exception indicates that a product requested by a client is “currently” unavailable for access

2.4.3.2 ProductLocked

const string ProductLockedConst = “ProductLocked”;

This exception indicates that an attempt was made to update or delete a locked product.

2.4.3.3 UnsafeUpdate

const string UnsafeUpdateConst = “UnsafeUpdate”;

This exception indicates an attempt was made to perform an update without first locking the entry or entries
being modified.

2.4.3.4 LockUnavailable

const string LockUnavailableConst =
“LockUnavailable”;

This exception indicates that the lock requested is not allowed or supported.

2.4.4 SystemFault Exceptions (j/NPS)

2.4.4.1 GeneralSystemFault (j/NPS)

const string GeneralSystemFaultConst =
“GeneralSystemFault”;

This exception indicates that a server encountered an internal error possibly unrelated to the Request.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

101

3. Callback (j/NPS)
The module Callback is compiled as a separate IDL file.

3.1. Callback (j/NPS)
module CB

{

interface Callback

 {

void notify (in UCO::State theState,in
UCO::RequestDescription description)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

void release ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

};

The Callback interface explicitly provides one of three mechanisms for client-server communication
between Request objects (i.e., call back, polling/asynchronous, or blocking/synchronous). The other
communication mechanisms are implicit. The Callback interface is contained in its own module (CB) . It is not
contained within the GIAS module.

3.1.1. notify (j/NPS)

void notify (in UCO::State theState, in
UCO::RequestDescription description)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

102

This operation notifies the Callback that it has been triggered or activated. A Request that has reached a
state which has been defined to trigger a Callback (see Appendix G for the states which trigger Callbacks)
invokes the notify operation on all Callbacks registered with it. A Request will activate a Callback by
invoking this operation and will supply a description of the triggering Request in description. It will also
indicate the state which the Request has entered (which triggered the notify) in the parameter theState.

3.1.2. release (j/NPS)

void release ()

raises (UCO::ProcessingFault, UCO::SystemFault);

This operation is invoked by the Request to indicate that the Callback will no longer be used (will not be
notified in the future). This allows a client to release any resources associated with this Callback.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

103

4. Boolean Query Syntax

4.1. Overview
The Boolean query syntax (BQS) is a key part of the specification of the GIAS. The intent of the BQS is to
formally define the syntax for queries made on geospatial catalogs. It is necessary to define the BQS in the
GIAS specification to “decouple” the interfaces used for querying from the implementation details of the
catalog. For example, the BQS allows a client to interact with a geospatial catalog in a uniform way
regardless of the database or database type underlying the catalog implementation, the native query
language of the database and the physical schema or data model of the database. This approach has the
dual benefit of simplifying the generation of queries by the client while not constraining the catalog
developers in the design choices for the implementation. The catalog implementers must, however, provide
the capability to translate the BQS into whatever query language and physical schema they have chosen.

4.2. BQS Design
The BQS is based upon the concept of an attribute-operator-value triplet called a factor. Each factor
represents a condition of interest to the client. These factors can be assembled into a complete query by
relating the factors with the Boolean operators “and” and “or”. BQS constructs are case insensitive and
BQS logical operators on strings and expressions are case sensitive.

The formal definition of the syntax of the BQS, described in Backus-Naur Form (BNF), is detailed below.

4.3. BNF definition
The Backus-Naur Form (BNF) for the Boolean query syntax is show below. Note that the individual BQS
tokens in a BQS statement are separated from each other by a space.

query ::= term { "or" term }

term ::= factor { "and" factor }

factor ::= ["not"] primary

primary ::= (simple_attribute_name comp_op constant_expression)

 | (geo_attribute_name geo_op geo_element)

 | (geo_attribute_name rel_geo_op number
dist_units “of” geo_element)

 | (text_attribute_name ["not"] "like"
quoted_string)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

104

 | (attribute_name “exists”)

 | ("(" query ")")

attribute ::= a member of the set of queryable
attribute names (defined in the appropriate GIAS
profile)

attribute_name ::= attribute | {entity
“:”}entity.attribute

simple_attribute_name ::= member of subset of
attribute_name for which boolean operators (comp_op)
are allowed

geo_attribute_name ::= member of subset of
attribute_name for which geospatial operators are
allowed

text_attribute_name ::= member of subset of
attribute_name for which string operators are allowed
(“free text search”)

comp_op ::= "=" | "<" | ">" | "<>" | "<=" | ">="

constant_expression ::= number | quoted_string

date ::= “’” year “/” month “/” day “[<blank>” hour
“:” minute “:” second]”’”

year ::= digit digit digit digit

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

105

month ::= digit digit

day ::= digit digit

hour ::= digit digit

minute ::= digit digit

second ::= digit digit [“.” digit {digit}]

geo_op ::= “intersect” | “outside”| “inside”

rel_geo_op ::= “within” | “beyond”

dist_units ::= “feet” | “meters” | “statute miles” |
“nautical miles” | “kilometers”

geo_element ::= point | polygon | rectangle | circle
| ellipse | line | polygon_set | 3dpoint

sign ::= “+” | “-”

number ::= [sign] n ["." [n]]

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

106

n ::= digit { digit }

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” |
“7” | “8” | ” 9”

quoted_string ::= "'" { character } "'" // Single
quotes

character ::= “a”|”b”| // All printable ASCII
characters To use a "'"

(single quote) use "''" (two single quotes)

Del = “,” // Delimiter

latitude ::= number

longitude ::= number

altitude ::= number

hemi ::= “N” | “S” | “E” | “W”

DMS ::= [digit] digit digit “:” digit digit “:”
digit digit “.” digit hemi

latitude_DMS ::= DMS

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

107

longitude_DMS ::= DMS

latlon ::= latitude Del longitude | latitude_DMS Del
longitude_DMS

coordinate ::= latlon

point :: = “POINT” “(“ coordinate “)”

3dpoint ::= “3DPOINT” “(“ coordinate Del altitude
“)”

polygon ::= “POLYGON” “(“ coordinate Del coordinate
Del coordinate {Del coordinate}“)”

rectangle ::= “RECTANGLE” “(“ upper_left Del
lower_right “)”

upper_left ::= coordinate

lower_right ::= coordinate

circle ::= “CIRCLE” “(“ coordinate Del radius “)”

units ::= “METERS” | “FEET”

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

108

radius ::= number units

ellipse ::= “ELLIPSE” “(“ coordinate Del
major_axis_len Del minor_axis_len Del north_angle “)”

major_axis_len ::= number units

minor_axis_len ::= number units

north_angle ::= number

line ::= “LINE” “(“ coordinate Del coordinate { Del
coordinate} “)”

polygon_set ::= “POLYGON_SET” “(“ polygon { Del
polygon} “)”

4.4. Rules and Constraints
The BNF rules are augmented by the following rules and constraints:

4.4.1. Operator Precedence

 The order of precedence for the operators defined in the BQS , from high (evaluated first) to low (evaluated
last) is :

() - parentheses – highest precedence

comp_op, geo_op, rel_geo_op, “like”, “not like”, exists

not

and

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

109

or – lowest precedence

 Operators of equal precedence are evaluated from left to right within an expression.

4.4.2. Units

The units applicable to the attributes in a BQS query are those specified by the server implementation. This
information is available via the AttributeInformation structure for each attribute. The AttributeInformation
structures are accessed through the DataModelMgr.

4.4.3. Strings and Wildcards

Wildcard expressions are allowed using the character "%" to denote a match with 0 or more characters and
the character “?” to match with exactly one character. For example the query:

name like 'rob%'

would match the following strings:

'rob' 'robert' 'robin'

 where the query

name like 'mik?'

would match the following strings

'mike' 'miki' 'miko'

The "like" and "not like" operators are the only operators used for text expressions and the only operators
supporting wildcards.

Wildcards can be used to implement the effect of many characters matching operations, such as: contains,
begins with, ends with, not contains, not begins with, not ends with, and so forth.

For example:

attribute like '%contains_this%'

 attribute like 'begins_with_this%'

 attribute like '%ends_with_this'

 attribute not like '%will_not_contain_this%'

 attribute not like 'will_not_begin_with_this%'

 attribute not like '%will_not_end_with_this'

4.4.4. BQS and UCOS/GIAS Types

To abet developers implementing BQS query parsers, the following tables (See Table 4-1 and Table 4-2)
provide a mapping between the above BNF and UCOS data structures.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

110

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

111

Table 4-1 Mapping between BQS BNF and UCOS Data Structures

BQS UCOS

Point Coordinate2d

Coordinate

Latlon

Latitude x

Longitude y

3dpoint Coordinate3d

Coordinate

Latlon

Latitude x

Longitude y

Altitude z

Polygon (collection of lines) Polygon (collection of Coordinate2d)

Coordinate

Latlon

Latitude x

Longitude y

Rectangle Rectangle

Coordinate2d

upper_left upper_left

Coordinate

Latlon

Coordinate2d

Latitude x

Longitude y

Lower_right lower_right

Coordinate

Latlon

Latitude x

Longitude y

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

112

Table 4-2 Mapping between BQS BNF and UCOS Data Structures

BQS UCOS

Circle Circle

centerpoint

Coordinate

Latlon

Latitude x

Longitude y

Radius radius

Number dimension

units

Reference_system

Ellipse Coordinate3d

centerpoint

Coordinate

Latlon

Latitude x

Longitude y

Minor_axis_len minor_axis_len

Number dimension

units

Reference_system

Major_axis_len major_axis_len

Number dimension

units

Reference_system

north_angle north_angle

Number float

Line LineString2d

Coordinate

Latlon

Latitude x

Longitude y

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

113

Coordinate

Latlon

Latitude x

Longitude y

polygon_set (collection of polygon’s) PolygonSet (collection of Polygon’s)

Also note that attributes of type Boolean should be described as a constant_expression in its quoted string
form i.e.

 attribute = 'TRUE'

4.4.5. Deriving attribute names from data model

The GIAS query services (CatalogMgr, StandingQueryMgr and QueryOrderMgr services) require the
identification of attributes both as elements of queries and as elements to be returned from a query. The
BQS defined above allows for the specification of the query terms, or selection criteria, using the queryable
attribute names from the data model that underlies the implementation. These attributes are available
through the methods on the DataModelMgr. However, the BQS does not allow for the specification of
relationship routes. Hence, when there are two or more relationship routes between entities containing
queryable attributes that the user wishes to query, the BQS and queryable attribute list is insufficient to
resolve the route ambiguity. The preferred solution to the route ambiguity would not require the user to
have knowledge of the potential routes, nor of the underlying data model structure.

The GIAS allows for the identification of a queryable attribute by a unique attribute name and a name that is
familiar to the user (an alias), via the Data Model Manager services. The current Data Model Manager meta-
model accommodates only one unique attribute name for each queryable attribute. However, a single user-
selectable attribute is insufficient to identify the route and/or role context. Therefore in order to allow an
attribute to be used in the correct context (i.e. the route) the following syntax rule for the queryable attribute
names is specified that conveys route/role information. Applying this rule to elements of the underlying
data model generates attributes that can be used by the CatalogMgr services without route ambiguity. Note
that this rule is used for attribute query submittal, result attributes, sort attributes and parameters associated
with ProductMgr::get_parameters operation.

4.4.6. Attribute Name Syntax Rule

The syntax for the form of attribute names is defined in the appropriate GIAS profile.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

114

Appendix A: GIAS IDL
//***

//*

//* The Geospatial and Imagery Access Service

//*

//*

//* Description: Defines the data types and interfaces needed

//* to support search, retrieval and access to geospatial

//* data such as images, maps charts and their supporting

//* data

//*

//*

//*

//* History:

//* Date Author Comment

//* ----- -------- ------------

//* 15 May 97 D. Lutz Initial release for review

//* 2 July 97 D. Lutz Released for TEM Review

//* 11 July 97 D. Lutz Changes based on 2 July TEM

//* 18 July 97 D. Lutz Released for NIMA CCB

//* 24 Oct 97 D. Lutz Changes based on 7 Oct TEM

//* 14 Nov 97 D. Lutz Changes based on 4 Nov TEM

//* 17 Dec 97 D. Lutz Changes based on 9 Dec TEM

//* 15 Apr 98 J. Baldo changes based on Mar TEM

//* 7 May 98 D.Lutz Changes based on 1 May TEM

//* 2 Jul 98 J. Baldo/D. Lutz Changes based

//* on 22-23 Jun TEM Requests - GIAS 3.2

//* 2 Jul 98 (J. Baldo): Callback module has been removed

//* from previous GIAS 3.2 specification release

//* 5 June 1998 and will be included in GIAS 3.3

//* 5 Nov 98 D. Lutz Added first version of
UpdateMgr

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

115

//*

//* 10 Mar 99 J. Baldo Changes based on March 99 TEM

//*

//* 5 August D. Lutz Mods from 3-4 August UIP WG.

//* 18 Februray 2000 D. Lutz New Generic Exception Model

//*

//*

//*

//*

//***

//***

//* The USIGS Common Object Specification (UCOS) contains

//* all the basic data types and interfaces common across

//* USIGS

//***

#include "uco.idl"

#include "cb.idl"

#include "uid.idl"

//***

//*

//* Module GIAS

//*

//*

//* Description: The main module for the Geospatial & Imagery

//* Access Service

//*

//*

//***

module GIAS

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

116

{

//Forward references for all interfaces, just for convenience

// The Library itself

 interface Library;

// Abstract classes that help define the managers

 interface LibraryManager;

 interface RequestManager;

 interface AccessManager;

// Specific managers defined

 interface OrderMgr;

 interface CreationMgr;

 interface UpdateMgr;

 interface CatalogMgr;

 interface StandingQueryMgr;

interface ProductMgr;

 interface IngestMgr;

 interface QueryOrderMgr;

 interface DataModelMgr;

//interface VideoMgr;

// The abstract request objects

 interface Request;

// Specific requests defined

 interface OrderRequest;

 interface CreateRequest;

 interface CreateMetaDataRequest;

 interface UpdateRequest;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

117

 interface SubmitQueryRequest;

 interface SubmitStandingQueryRequest;

 interface SetAvailabilityRequest;

 interface HitCountRequest;

 interface GetParametersRequest;

 interface IngestRequest;

 interface SubmitQueryOrderRequest;

 interface GetRelatedFilesRequest;

 interface CreateAssociationRequest;

 interface UpdateByQueryRequest;

//***

//* DataTypes re-used from UCOS

//***

 typedef UCO::NameValueList PropertyList;

 typedef UCO::Rectangle GeoRegion;

enum GeoRegionType {

LINE_SAMPLE_FULL,

LINE_SAMPLE_CHIP,

LAT_LON ,

ALL,

NULL_REGION};

//***

//* GIAS specific data types

//***

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

118

enum AvailabilityRequirement

 {

 REQUIRED, NOT_REQUIRED

 };

typedef string UseMode;

typedef sequence <short> RsetList;

enum OrderType {STANDING, IMMEDIATE};

typedef any ProductSpec;

typedef string ProductFormat;

typedef string ImageUniqueIdentifier;

typedef string ImageFormat;

typedef string Compression;

typedef short BitsPerPixel;

typedef string Algorithm;

enum SupportDataEncoding {ASCII, EBCDIC};

typedef sequence < ProductFormat > ProductFormatList;

struct ImageSpec

 {

 ImageFormat imgform;

ImageUniqueIdentifier; imageid;

 Compression comp;

 BitsPerPixel bpp;

 Algorithm algo;

RsetList rrds;

GeoRegion sub_section;

GeoRegionType geo_region_type;

SupportDataEncoding encoding;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

119

 };

typedef sequence < ImageSpec > ImageSpecList;

struct AlterationSpec

 {

 ProductFormat pf;

 ProductSpec ps;

 GeoRegion sub_section;

GeoRegionType geo_region_type;

 };

typedef sequence < AlterationSpec > AlterationSpecList;

struct PackagingSpec

 {

 string package_identifier;

 string packaging_format_and_compression;

 };

struct TailoringSpec {

UCO::NameNameList specs;

 };

struct MediaType

 {

 string media_type;

unsigned short quantity;

 };

typedef sequence < MediaType > MediaTypeList;

struct PhysicalDelivery

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

120

string address;

 };

enum DestinationType

 {

FTP, EMAIL, PHYSICAL

 };

union Destination switch (DestinationType)

 {

 case FTP: UCO::FileLocation f_dest;

 case EMAIL: UCO::EmailAddress e_dest;

 case PHYSICAL: PhysicalDelivery h_dest;

 };

 typedef sequence < Destination > DestinationList;

struct ValidationResults

 {

 boolean valid;

 boolean warning;

 string details;

 };

typedef sequence < ValidationResults > ValidationResultsList;

typedef UCO::Name RelatedFileType;

typedef sequence<RelatedFileType> RelatedFileTypeList;

struct RelatedFile

 {

 RelatedFileType file_type;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

121

 UCO::FileLocation location;

 };

typedef sequence <RelatedFile> RelatedFileList;

enum ConceptualAttributeType

 {

 FOOTPRINT, CLASSIFICATION, OVERVIEW, THUMBNAIL, DATASETTYPE,

 MODIFICATIONDATE, PRODUCTTITLE, DIRECTACCESS,
DIRECTACCESSPROTOCOL, UNIQUEIDENTIFIER, DATASIZE};

typedef string Entity;

typedef string ViewName;

typedef sequence< ViewName > ViewNameList;

struct View {

 ViewName view_name;

 boolean orderable;

 ViewNameList sub_views;

};

typedef sequence < View > ViewList;

enum DomainType

 {

 DATE_VALUE, TEXT_VALUE, INTEGER_VALUE, FLOATING_POINT_VALUE, LIST,

 ORDERED_LIST, INTEGER_RANGE, FLOATING_POINT_RANGE, GEOGRAPHIC,
INTEGER_SET, FLOATING_POINT_SET, GEOGRAPHIC_SET, BINARY_DATA,
BOOLEAN_VALUE };

 struct DateRange

 {

 UCO::AbsTime earliest;

 UCO::AbsTime latest;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

122

 };

struct IntegerRange

 {

 long lower_bound;

 long upper_bound;

 };

 struct FloatingPointRange

 {

 double lower_bound;

 double upper_bound;

 };

typedef sequence < IntegerRange > IntegerRangeList;

typedef sequence < FloatingPointRange > FloatingPointRangeList;

union Domain switch (DomainType)

 {

 case DATE_VALUE: DateRange d;

 case TEXT_VALUE: unsigned long t;

 case INTEGER_VALUE: IntegerRange iv;

 case INTEGER_SET: IntegerRangeList is;

 case FLOATING_POINT_VALUE: FloatingPointRange fv;

 case FLOATING_POINT_SET: FloatingPointRangeList fps;

 case LIST: UCO::NameList l;

 case ORDERED_LIST: UCO::NameList ol;

 case INTEGER_RANGE: IntegerRange ir;

 case FLOATING_POINT_RANGE: FloatingPointRange fr;

 case GEOGRAPHIC: UCO::Rectangle g;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

123

 case GEOGRAPHIC_SET: UCO::RectangleList gs;

 case BINARY_DATA: UCO::BinData bd;

 case BOOLEAN_VALUE: boolean bv;

 };

enum AttributeType

 {

 TEXT,

 INTEGER,

 FLOATING_POINT,

 UCOS_COORDINATE,

 UCOS_POLYGON,

 UCOS_ABS_TIME,

 UCOS_RECTANGLE,

 UCOS_SIMPLE_GS_IMAGE,

 UCOS_SIMPLE_C_IMAGE,

 UCOS_COMPRESSED_IMAGE,

 UCOS_HEIGHT,

 UCOS_ELEVATION,

 UCOS_DISTANCE,

 UCOS_PERCENTAGE,

 UCOS_RATIO,

 UCOS_ANGLE,

 UCOS_FILE_SIZE,

 UCOS_FILE_LOCATION,

 UCOS_COUNT,

 UCOS_WEIGHT,

 UCOS_DATE,

 UCOS_LINESTRING,

UCOS_DATA_RATE,

UCOS_BIN_DATA,

BOOLEAN_DATA,

UCOS_DURATION

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

124

 };

enum RequirementMode

 {

 MANDATORY, OPTIONAL

 };

struct AttributeInformation

 {

 string attribute_name;

 AttributeType attribute_type;

 Domain attribute_domain;

 string attribute_units;

string attribute_reference;

RequirementMode mode;

 string description;

 boolean sortable;

 boolean updateable;

 };

typedef sequence < AttributeInformation > AttributeInformationList;

struct Association {

string name;

ViewName view_a;

ViewName view_b;

string description;

UCO::Cardinality card;

AttributeInformationList attribute_info;

 };

typedef sequence <Association> AssociationList;

typedef sequence < Library > LibraryList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

125

typedef string ManagerType;

 typedef sequence < ManagerType > ManagerTypeList;

typedef sequence < Request > RequestList;

typedef sequence < UseMode > UseModeList;

struct LibraryDescription

 {

 string library_name;

 string library_description;

 string library_version_number;

 };

typedef sequence < LibraryDescription > LibraryDescriptionList;

struct Query{

ViewName view;

string bqs_query;

};

typedef UCO::DAGList QueryResults;

enum NamedEventType

{

START_EVENT,

STOP_EVENT,

FREQUENCY_EVENT

};

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

126

struct Event {

 string event_name;

 NamedEventType event_type;

 string event_description;

};

typedef sequence < Event > EventList;

enum DayEvent { MON, TUE, WED, THU, FRI, SAT, SUN, FIRST_OF_MONTH,
END_OF_MONTH };

struct DayEventTime

{

 DayEvent day_event;

 UCO::Time time;

};

enum LifeEventType {ABSOLUTE_TIME, DAY_EVENT_TIME, NAMED_EVENT,
RELATIVE_TIME};

union LifeEvent switch (LifeEventType)

 {

 case ABSOLUTE_TIME: UCO::AbsTime at;

 case DAY_EVENT_TIME: DayEventTime day_event;

 case NAMED_EVENT: string ev;

 case RELATIVE_TIME: UCO::Time rt;

 };

typedef sequence < LifeEvent > LifeEventList;

struct QueryLifeSpan {

LifeEvent start;

LifeEvent stop;

LifeEventList frequency;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

127

};

 enum Polarity { ASCENDING, DESCENDING };

 struct SortAttribute

 {

 UCO::Name attribute_name;

 Polarity sort_polarity;

 };

 typedef sequence < SortAttribute > SortAttributeList;

struct DelayEstimate {

unsigned long time_delay;

boolean valid_time_delay;

};

struct ProductDetails {

MediaTypeList mTypes;

 UCO::NameList benums;

 AlterationSpec aSpec;

 UID::Product aProduct;

 string info_system_name;

};

typedef sequence <ProductDetails> ProductDetailsList;

struct DeliveryDetails {

 Destination dests;

 string receiver;

 string shipmentMode;

};

typedef sequence < DeliveryDetails > DeliveryDetailsList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

128

struct OrderContents {

string originator;

TailoringSpec tSpec;

PackagingSpec pSpec;

UCO::AbsTime needByDate;

string operatorNote;

short orderPriority;

ProductDetailsList prod_list;

DeliveryDetailsList del_list;

};

struct QueryOrderContents {

string originator;

TailoringSpec tSpec;

PackagingSpec pSpec;

string operatorNote;

short orderPriority;

AlterationSpec aSpec;

DeliveryDetailsList del_list;

};

struct AccessCriteria {

string userID;

string password;

string licenseKey;

};

struct PackageElement {

UID::Product prod;

UCO::NameList files;

};

typedef sequence< PackageElement > PackageElementList;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

129

 struct DeliveryManifest {

string package_name;

PackageElementList elements;

};

typedef sequence<DeliveryManifest>
DeliveryManifestList;

typedef string CallbackID;

//***

 //* The Exceptions Identifiers

 //* Note: Three sets of IDL Strings Constants are being used as

 //* the Exceptions for the GIAS

 //***

// UCO::InvalidInputParameter Exceptions
const string BadAccessCriteriaConst = “BadAccessCriteria”;
const string BadAccessValueConst = “BadAccessValue”;
const string BadCreationAttributeValueConst =
“BadCreationAttributeValue”;
const string BadEmailAddressConst = “BadEmailAddress”;
const string BadGeoRegionConst = “BadGeoRegion”;
const string BadLocationConst = “BadLocation”;
const string BadPropertyValueConst = “BadPropertyValue”;
const string BadQueryConst = “BadQuery”;
const string BadQueryAttributeConst = “BadQueryAttribute”;
const string BadQueryValueConst = “BadQueryValue”;
const string BadTimeConst = “BadTime”;
const string BadUseModeConst = “BadUseMode”;
const string UnknownCallBackConst = “UnknownCallBack”;
const string UnknownCreationAttributeConst = “UnknownCreationAttribute”;
const string UnknownManagerTypeConst = “UnknownManagerType”;
const string UnknownProductConst = “UnknownProduct”;
const string UnknownPropertyConst = “UnknownProperty”;
const string UnknownRequestConst = “UnknownRequest”;
const string UnregisteredCallbackConst = “UnregisteredCallback”;
const string UnknownUseModeConst = “UnknownUseMode”;
const string BadOrderConst = “BadOrder”;
const string UnknownViewNameConst = “UnknownViewName”;
const string UnknownEntityConst = “UnknownEntity”;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

130

const string UnsupportedConceptualAttributeConst =
“UnsupportedConceptualAttribute”;
const string NoValuesRequestedConst = “NoValuesRequested”;
const string BadSortAttributeConst = “BadSortAttribute”;
const string NonUpdateableAttributeConst = “NonUpdateableAttribute”;
const string BadFileTypeConst = “BadFileType”;
const string InvalidCardinalityConst = “InvalidCardinality”;
const string UnknownAssociationConst = “UnknownAssociation”;
const string InvalidObjectConst = “InvalidObject”;
const string UnknownCategoryConst = “UnknownCategory”;
const string InvalidEventConst = “InvalidEvent”;
const string BadResultAttributeConst = “BadResultAttribute”;
const string BadUpdateAttributeConst = “BadUpdateAttribute”;
const string ImplementationLimitConst = “ImplementationLimit”;

// UCO::ProcessingFault Exceptions
const string ProductUnavailableConst = “ProductUnavailable”;
const string LockUnavailableConst = “LockUnavailable”;
const string UnsafeUpdateConst = “UnsafeUpdate”;
const string ProductLockedConst = “ProductLocked”;

// UCO::SystemFault Exceptions
const string GeneralSystemFaultConst = “GeneralSystemFault”;

//***

//* The Interfaces

//***

//***

 //* interface GIAS::Library.

 //*

 //* Description: This object represents a Library. It

 //* provides operations to discover and acquire manager objects,

 //* which provide access to all the functionality of this

 //* Library.

 //*

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

131

 //***

 interface Library

 {

ManagerTypeList get_manager_types ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 LibraryManager get_manager (in ManagerType manager_type,

 in AccessCriteria access_criteria)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

LibraryDescription get_library_description ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 LibraryDescriptionList get_other_libraries (in AccessCriteria
access_criteria)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* Interface GIAS::LibraryManager

 //*

 //* Description: This (abstract) object defines the basic

 //* functions common to all types of managers.

 //*

 //*

 //***

 interface LibraryManager

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

132

 {

 UCO::NameList get_property_names ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 PropertyList get_property_values (in UCO::NameList

desired_properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 LibraryList get_libraries ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* Interface GIAS::RequestManager

 //*

 //* Description: This (abstact) object defines the basic

 //* functions common to managers that use operations that

 //* generate request objects.

 //*

 //*

 //***

 interface RequestManager

 {

 RequestList get_active_requests ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_default_timeout ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void set_default_timeout (in unsigned long new_default)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

133

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 unsigned long get_timeout (in Request aRequest)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void set_timeout (in Request aRequest, in unsigned long

new_lifetime)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void delete_request (in Request aRequest)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* interface GIAS:: AccessManager

 //*

 //* Description: Provides functions to check and request the

 //* availability of Library products for specific purposes

 //*

 //***

 interface AccessManager:RequestManager

 {

 UseModeList get_use_modes ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 boolean is_available (in UID::Product product, in UseMode use_mode)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

134

// Returns the time (in seconds) estimated to put the requested product
// into the requested UseMode. DOES NOT request a change in the

// availability of product.

 unsigned long query_availability_delay (in UID::Product product,

in AvailabilityRequirement availability_requirement,

 in UseMode use_mode)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

short get_number_of_priorities()

raises (UCO::ProcessingFault, UCO::SystemFault);

SetAvailabilityRequest set_availability (in UID::ProductList products,
in AvailabilityRequirement availability_requirement, in UseMode
use_mode, in short priority)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* The Managers

 //*

 //***

//***

 //* interface GIAS::QueryOrderMgr

 //* Derived from GIAS::LibraryManager and

 //* GIAS::RequestManager

 //*

 //* Description: Provides operations to submit a

 //* query based order.

 //*

 //*

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

135

 //***

 interface QueryOrderMgr:LibraryManager, RequestManager

 {

 EventList get_event_descriptions()

raises (UCO::ProcessingFault, UCO::SystemFault);

SubmitQueryOrderRequest submit_query_order (

 in Query aQuery,

 in QueryLifeSpan lifespan,

in OrderType o_type,

 in QueryOrderContents order,

in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

};

//***

//* interface GIAS:: VideoMgr

//* Derived from GIAS::LibraryManager and GIAS::AccessManager

//*

//* Description: Provides operations to retrieve video data

//*

//* NOTE: This interface is TBR.

//***

//interface VideoMgr : LibraryManager, AccessManager {

 //};

//***

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

136

//***

 //* interface GIAS:: OrderMgr

 //* Derived from GIAS:: LibraryManager and GIAS::AccessManager

 //*

 //* Description: Provides operations to submit orders for Products

 //* contained in the Library:

 //*

 //*

 //*

 //***

interface OrderMgr:LibraryManager, AccessManager

 {

 UCO::NameList get_package_specifications()

raises (UCO::ProcessingFault, UCO::SystemFault);

 ValidationResults validate_order (in OrderContents order, in
PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 OrderRequest order (in OrderContents order, in PropertyList
properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* interface GIAS:: DataModelMgr

 //* Derived from GIAS:: LibraryManager

 //*

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

137

 //* Description: Provides operations to discover the elements of
the

 //* data model in use by the library

 //*

 //*

 //*

 //***

 interface DataModelMgr:LibraryManager

 {

UCO::AbsTime get_data_model_date (in PropertyList properties)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

UCO::NameList get_alias_categories(in PropertyList properties)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

UCO::NameNameList get_logical_aliases(in string category, in
PropertyList properties)

raises(UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

string get_logical_attribute_name (in ViewName view_name,in
ConceptualAttributeType attribute_type, in PropertyList properties,)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

ViewList get_view_names (in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

AttributeInformationList get_attributes (in ViewName view_name,in
PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

138

AttributeInformationList get_queryable_attributes (in ViewName
view_name,in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 UCO::EntityGraph get_entities (in ViewName view_name,in PropertyList
properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 AttributeInformationList get_entity_attributes (in Entity aEntity,in
PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

AssociationList get_associations(in PropertyList properties)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

unsigned short get_max_vertices(in PropertyList properties)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

};

//***

 //* interface GIAS:: CreationMgr

 //* Derived from GIAS::RequestManager and

 //* GIAS::LibraryManager

 //* Description: Provides operations to request/nominate the

 //* archiving and cataloging of a new product to a Library.

 //*

 //*

 //***

 interface CreationMgr:LibraryManager, RequestManager

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

139

 CreateRequest create (in UCO::FileLocationList new_product,in
RelatedFileList related_files, in UCO::DAG creation_metadata, in
PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 CreateMetaDataRequest create_metadata (in UCO::DAG
creation_metadata, in ViewName view_name, in RelatedFileList
related_files, in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

CreateAssociationRequest create_association(in string assoc_name,

in UID::Product view_a_object,

 in UID::ProductList view_b_objects,

in UCO::NameValueList assoc_info)

raises (UCO::InvalidInputParameter,
UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: UpdateMgr

 //* Derived from GIAS:: LibraryManager, and GIAS::RequestManager

 //* Description: Provides operations to modify, extend or delete

 //* existing catalog entries in a GIAS Library.

 //*

 //*

 //***

 interface UpdateMgr: LibraryManager, RequestManager

 {

 void set_lock(in UID::Product lockedProduct)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

140

raises(UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 UpdateRequest update (in ViewName view, in UCO::UpdateDAGList changes,
in RelatedFileList relfiles, in PropertyList properties)

 raises(UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

UpdateByQueryRequest update_by_query(in UCO::NameValue updated_attribute,

in Query bqs_query,

in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault, UCO::SystemFault);

 void release_lock(in UID::Product lockedProduct)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void delete_product(in UID::Product prod)

raises(UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault

);

 };

//***

 //* interface GIAS:: CatalogMgr

 //* Derived from GIAS::LibraryManager and

 //* GIAS::RequestManager

 //*

 //* Description: Provides operations to submit a query for

 //* processing.

 //*

 //*

 //***

 interface CatalogMgr:LibraryManager, RequestManager

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

141

 SubmitQueryRequest submit_query (

in Query aQuery,

in UCO::NameList result_attributes,

in SortAttributeList sort_attributes,

in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 HitCountRequest hit_count (in Query

 aQuery, in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

};

//***

 //* interface GIAS::StandingQueryMgr

 //* Derived from GIAS::LibraryManager and

 //* GIAS::RequestManager

 //*

 //* Description: Provides operations to submit a

 //* standing query.

 //*

 //*

 //***

interface StandingQueryMgr:LibraryManager, RequestManager

 {

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

142

 EventList get_event_descriptions()

raises (UCO::ProcessingFault, UCO::SystemFault);

 SubmitStandingQueryRequest submit_standing_query (

 in Query aQuery,

 in UCO::NameList
result_attributes,

 in SortAttributeList
sort_attributes,

 in QueryLifeSpan lifespan,

 in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* interface GIAS:: ProductMgr

 //* Derived from GIAS::LibraryManager and GIAS::AccessManager

 //*

 //* Description: Provides operations to retrieve data about a

 //* specific data set.

 //*

 //*

 //***

 interface ProductMgr:LibraryManager, AccessManager

 {

 GetParametersRequest get_parameters (in UID::Product product, in
UCO::NameList desired_parameters, in PropertyList properties)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

143

RelatedFileTypeList get_related_file_types(in UID::Product prod)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

GetRelatedFilesRequest get_related_files (in UID::ProductList

products, in UCO::FileLocation location, in RelatedFileType

type, in PropertyList properties)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,

UCO::SystemFault);

 };

//***

 //* interface GIAS:: IngestMgr

 //* Derived from GIAS::LibraryManager and

 //* GIAS::RequestManager

 //*

 //* Description: Provides operations to perform bulk transfers

 //* of data between Libraries.

 //*

 //*

 //***

interface IngestMgr:LibraryManager, RequestManager

 {

// FileLocation contains a directory

 IngestRequest bulk_pull (in UCO::FileLocation location, in
PropertyList property_list)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

// FileLocation contains a directory

 IngestRequest bulk_push (in Query aQuery, in UCO::FileLocation
location, in PropertyList property_list)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

144

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 };

//***

 //* interface GIAS:: Request

 //*

 //* Description: An (abstract) object that provides operations

 //* common to all forms of requests.

 //*

 //*

 //***

 interface Request

 {

 UCO::RequestDescription get_request_description ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void set_user_info (in string message)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 UCO::Status get_status ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 DelayEstimate get_remaining_delay ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void cancel ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 CallbackID register_callback (in CB::Callback acallback)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void free_callback (in CallbackID id)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

145

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 RequestManager get_request_manager ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: OrderRequest

 //* Derived from GIAS::Request

 //* Description: Returned by calls to order.

 //*

 //*

 //***

interface OrderRequest:Request

 {

 UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: SubmitQueryOrderRequest

 //* Derived from GIAS::Request

 //* Description: Returned by calls to submit_query_order.

 //*

 //*

 //***

interface SubmitQueryOrderRequest:Request

 {

 void pause()

raises (UCO::ProcessingFault, UCO::SystemFault);

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

146

 void resume()

raises (UCO::ProcessingFault, UCO::SystemFault);

UCO::State complete_list (out DeliveryManifestList prods)

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete (out DeliveryManifest prods)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //***

 //* interface GIAS:: CreateRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to create

 //*

 //*

 //***

interface CreateRequest:Request

 {

 UCO::State complete (out UID::ProductList new_products)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: CreateMetaDataRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to create_metadata

 //*

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

147

 //*

 //***

 interface CreateMetaDataRequest:Request

 {

 UCO::State complete (out UID::Product new_product)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: UpdateRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to update

 //*

 //*

 //***

interface UpdateRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: SubmitQueryRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to query

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

148

 //*

 //*

 //***

interface SubmitQueryRequest:Request

 {

 void set_number_of_hits (in unsigned long hits)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 UCO::State complete_DAG_results (out QueryResults results)

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_stringDAG_results (out UCO::StringDAGList results)

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_XML_results (out UCO::XMLDocument results)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: SubmitStandingQueryRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to submit_standing_query

 //*

 //*

 //***

 interface SubmitStandingQueryRequest:Request

 {

 void set_number_of_hits (in unsigned long hits)

 raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 unsigned long get_number_of_hits()

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

149

raises (UCO::ProcessingFault, UCO::SystemFault);

 unsigned long get_number_of_hits_in_interval(in unsigned long
interval)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 unsigned long get_number_of_intervals()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void clear_all()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void clear_intervals(in unsigned long num_intervals)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void clear_before(in UCO::Time relative_time)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

 void pause()

raises (UCO::ProcessingFault, UCO::SystemFault);

 void resume()

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::AbsTime get_time_last_executed()

 raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::AbsTime get_time_next_execution()

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_DAG_results (out QueryResults results)

raises (UCO::ProcessingFault, UCO::SystemFault);

UCO::State complete_stringDAG_results (out UCO::StringDAGList results)

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_XML_results (out UCO::XMLDocument results)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

150

//***

 //* interface GIAS:: SetAvailabilityRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to makeAvailable

 //*

 //* `

 //***

 interface SetAvailabilityRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: HitCountRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to Hitcount

 //*

 //*

 //***

interface HitCountRequest:Request

 {

 UCO::State complete (out unsigned long number_of_hits)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: GetParametersRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

151

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to get_parameters

 //*

 //*

 //***

 interface GetParametersRequest:Request

 {

 UCO::State complete (out UCO::DAG parameters)

raises (UCO::ProcessingFault, UCO::SystemFault);

 UCO::State complete_stringDAG (out UCO::StringDAG parameters)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: IngestRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to bulk_push and bulk_pull

 //*

 //*

 //***

 interface IngestRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: GetRelatedFilesRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

152

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to get_related_files

 //*

 //*

 //***

interface GetRelatedFilesRequest:Request

 {

 UCO::State complete (out UCO::NameList locations)

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

 //* interface GIAS:: CreateAssociationRequest

 //* Derived from GIAS::Request

 //*

 //* Description: Returned by calls to create_association

 //*

 //*

 //***

interface CreateAssociationRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

//***

//* interface GIAS::UpdateByQueryRequest

//* Derived from GIAS::Request

//* Description: Returned by calls to update_by_query

//*

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

153

//***

interface UpdateByQueryRequest:Request

 {

 UCO::State complete ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

}; // end of module GIAS

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

Appendix B: Callback IDL
//***

 //* interface GIAS::Callback

 //*

 //* Description: General callback interface

 //*

 //* NOTE: The Callback interface is implemented on the

 //* "client" side to allow "servers" to notify clients of

 //* completion of requests.

 //*

 //* NOTE: Callback module is now compiled as a separate IDL file. This will

 //* be changed in GIAS 3.3

 //***

#include “uco.idl”

module CB
{

interface Callback

 {

void notify (in UCO::State theState, in
UCO::RequestDescription description)

raises (UCO::InvalidInputParameter, UCO::ProcessingFault,
UCO::SystemFault);

void release ()

raises (UCO::ProcessingFault, UCO::SystemFault);

 };

};

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

155

Appendix C UML Diagrams
The GIAS IDL interface has been modeled using Unified Modeling Language (UML). A brief description of the notation
used for the GIAS class diagrams was described in section 1.2. The purpose of this section is to provide a more detailed
overview of UML to show the reader the “what” and “how” of the use of the various UML diagrams for analysis and
modeling.

UML is based on three object-oriented modeling languages: 1) Object Modeling Technique (OMT) by James Rumbaugh;
2) Booch Method by Grady Booch; and 3) Object-oriented Software Engineering Method by Ivar Jacobson. Although all
three methods had a large critical mass of users the authors were motivated to merge their modeling methods based on the
following rationale:

• Their methods were evolving toward each other and already shared many commonalties.

• A common modeling language would greatly enhance communication between designers and
implementers.

• A common modeling language would greatly enhance portability amongst object-oriented analysis
and design tool vendors.

• A combination of the three methods would have a synergistic effect of combining lessons learned and
addressing problems that the former method did not address well.

 UML has been submitted as a standard modeling language to OMG and can be obtained as OMG documents ad/97-01-01
 ad/97-01-14. Based on the above rationale and potential for standardization the justification was used for using UML
as the modeling language for GIAS.

 UML distinguishes between the notions of model and diagram. A model contains all of the underlying elements of
information about a system under consideration and does so independently of how those elements are visually
presented. A diagram is a particular visualization of certain kinds of elements from a model and generally exposes only a
subset of those elements' detailed information. A given model element might exist on multiple diagrams, but there is but
one definition of that element in the underlying model.

 UML defines notation and semantics for the following diagrams:

• class diagrams - Is a collection of (static) declarative model elements, such as classes, types, and
their relationships, connected as a graph and to each other and to their contents. Class diagrams
may be organized into packages either with their underlying models or as separate packages that
build upon the underlying model packages.

• use-case diagrams - Is a graph of actors, a set of use cases enclosed by a system boundary
communication (participation) associations between the actors and the use cases, and
generalizations among the use cases.

• interaction diagrams

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

156

• sequence diagrams - Shows objects participating in a set of interactions based on their “lifelines”
and the messages that they exchange arranged in time sequence.

• collaboration diagrams - Shows interactions amongst a set of objects.

• state diagrams - Is a bipartite graph of states and transitions. It shows the sequences of states that
an object or an interaction goes through during its life in response to received stimuli, together with
its responses and actions.

• component diagrams - Is a graph of components connected by dependency relationships. It shows
aspects of implementation, including source code structure and run-time implementation structure.

• deployment diagrams - Is a graph of nodes connected by communication associations. It shows
the configuration of run-time processing elements and the software components, processes, and
objects that live on them.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

157

Appendix D Reference OMG Standard IDL

Appendix E CORBA Standard Exceptions
#define ex_body {unsigned long minor;
completion_status completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};

enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception “UNKNOWN ex_body;

exception BAD_PARAM ex_body;

exception NO_MEMORY ex_body;

exception IMP_LIMIT ex_body;

exception COMM_FAILURE ex_body;

exception INV_OBJREF ex_body;

exception NO_PERMISSION ex_body;

exception INTERNAL ex_body;

exception MARSHAL ex_body;

exception INITIALIZE ex_body;

exception NO_IMPLEMENT ex_body;

exception BAD_TYPECODE ex_body;

exception BAD_OPERATION ex_body;

exception NO_RESOURCES ex_body;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

158

exception NO_RESPONSE ex_body;

exception PERSIST_STORE ex_body;

exception BAD_INV_ORDER ex_body;

exception TRANSIENT ex_body;

exception FREE_MEM ex_body;

exception INV_IDENT ex_body;

exception INV_FLAG ex_body;

exception INTF_REPOS ex_body;

exception BAD_CONTEXT ex_body;

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

159

Appendix F Acronyms

API Application Program Interface

CIIF Common Imagery Interoperability Facilities

CIIP Common Imagery Interoperability Profile

CIIWG Common Imagery Interoperability Working Group

CORBA Common Object Request Broker Architecture

GIAS Geospatial & Imagery Access Services

IASS Image Access Services Specification

IDL Interface Definition Language

ISO International Standard Organization

NIMA National Imagery and Mapping Agency

OGC Open GIS Consortium

OMG Object Management Group

TBD To Be Determined

TBR To Be Resolved

UCOS USIGS Common Object Specification

UIP USIGS Interoperability Profile

USIGS United States Imagery and Geospatial Information System

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

160

Appendix G: UML Statechart Diagrams
This appendix provides a set of UML statechart diagrams that describe a particular aspect of the GIAS’s
implementation behavior. The audience for these diagrams are targeted for developers implementing GIAS
clients and developers implementing GIAS services. GIAS client developers will use these diagrams to infer
GIAS service behavior and GIAS service developers will use these diagrams as a specification for behavior
of GIAS services.

This appendix will evolve based on changes to the GIAS OMG IDL specification and expanded
documentation of GIAS UML design and implementation descriptions. At present this section includes
UML statecharts for interface generalizations of the GIAS IDL Interface Request, as shown in figure G-11.

UpdateRequest

+ complete()

<<Interface>>

UpdateByQueryRequest

+ complete()

<<Interface>>

Request

+ get_request_description()
+ set_user_info()
+ get_status()
+ get_remaining_delay()
+ cancel()
+ register_callback()
+ free_callback()
+ get_request_manager()

<<Interface>>

IngestRequest

+ complete()

<<Interface>>

SubmitQueryRequest

+ set_number_of_hits()
+ complete_DAG_results()
+ complete_table_results()
+ complete_XML_results()

<<Interface>>

GetParametersRequest

+ complete()

<<Interface>>

CreateRequest

+ complete()

<<Interface>>

GetRelatedFilesRequest

+ complete()

<<Interface>>

HitCountRequest

+ complete()

<<Interface>>

SubmitStandingQueryRequest

+ set_number_of_hits()
+ get_number_of_hits()
+ get_number_of_hits_in_interval()
+ get_number_of_intervals()
+ clear_all()
+ clear_intervals()
+ clear_before()
+ pause()
+ resume()
+ get_time_last_executed()
+ get_time_next_execution()
+ complete_DAG_results()
+ complete_table_results()
+ complete_XML_results()

<<Interface>>

CreateMetaDataRequest

+ complete()

<<Interface>>

SubmitQueryOrderRequest

+ pause()
+ resume()
+ complete()

<<Interface>>

OrderRequest

+ complete()

<<Interface>>

SetAvailabilityRequest

+ complete()

<<Interface>>

CreateAssociationRequest

+ complete()

<<Interface>>

+ complete_StringTable_results()

G-1 Interface Generalization for the GIAS Interface Request

The following state diagrams reflect the state machine for each generalization of the GIAS Interface Request.
States marked with an asterisk indicate that a Callback (if one has been registered with this Request) is
triggered when that state is entered.

1 N.B., these new State Diagrams supercede UCO:State/Status Terminal/Non-Terminal details described in
previous versions of the UCOS specifications.

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

161

SUBMIT_STANDING_QUERY_REQUEST_INITIAL_STATE

PENDING

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

SUSPENDED

ABORTED

CANCELED

Queue_New_Submit_Standing_Query_Request

Start_Processing_First_Standing_Op_Cycle

Start_Processing_Next_Standing_Op_Cycle

SUBMIT_STANDING_QUERY_REQUEST_DELETED

Canceled_by_Client

Lifetime_ExpiredLifetime_Expires

Lifetime_Expires
Deleted_via_Request_Manager

SubmitStandingQueryRequest - State Diagram

No_Results_Found

Some_Results_Available

All_Results_Computed_Last_Cycle

All_Results_Retrieve_for_Current_Op_Cycle

Begin_Processing_Next_Op_Cycle

N.B., for states
SUSPENDED, ABORTED,
& CANCELED, detail is
removed for presentation.

*

*

*

*

G-2 UML Statechart – SubmitStandingRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

162

ORDER_REQUEST_INITIAL_STATE
OrderRequest - State Diagram

PENDING

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

SUSPENDED

ABORTED

CANCELED

Queue_New_Order_Request

Start_Processing_Order

Start_Processing_Order

Lifetime_Expires Lifetime_ExpiresLifetime_Expires

Deleted_via_Request_Manager

Order_Completely_Processed

*

*

*

G-3 UML Statechart – OrderRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

163

CREATE_META_DATA_REQUEST_DELETED

PENDING SUSPENDED

ABORTED

CANCELED

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

CREATE_META_DATA_REQUEST_INITIAL_STATE

Lifetime_Expires
Lifetime_Expires

Start_Processing_Create_Meta_Data_Request

Canceled_by_Client

Lifetime_Expires

Deleted_via_Request_Manager

Queue_New_Request

Start_Processing_Create_Meta_Data_Request

*

*

*

G-4 UML Statechart CreateMetadataRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

164

GET_PARAMETERS_REQUEST_DELETED

PENDING SUSPENDED

ABORTED

CANCELED

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

GET_PARAMETERS_REQUEST_INITIAL_STATE
GetParametersRequest - State Diagram

Lifetime_Expires
Lifetime_Expires

Start_Get_Parameters_Request

Canceled_by_Client

Lifetime_Expires

Deleted_via_Request_Manager

Queue_Get_Parameters_Request

Start_Get_Parameters_Request

*

*

*

G-5 UML Statechart GetParametersRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

165

HIT_COUNT_REQUEST_DELETED

PENDING SUSPENDED

ABORTED

CANCELED

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

HIT_COUNT_REQUEST_INITIAL_STATE

Queue_New_Hit_Count_Request

Start_Processing_Hit_Count_Request

Start_Processing_Hit_Count_Request

Canceled_by_Client

Lifetime_Expires
Lifetime_Expires

Lifetime_Expires

Deleted_via_Request_Manager

HitCountRequest - State Diagram

*

*

*

G-6 UML Statechart HitCountRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

166

SET_AVAILABILITY_REQUEST_INITIAL_STATE

PENDING

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

SUSPENDED

ABORTED

CANCELED

Queue_New_Set_Availability_Request

Start_Processing_Set_Availability_Request

SetAvailabilityRequest - State Diagram

Start_Processing_Set_Availabiity_Request

Availability_Mode_Set

Canceled_by_Client

Lifetime_Expires
Lifetime_ExpiresLifetime_Expires

Deleted_via_Request_Manager

*

*

*

G-7 UML Statechart SetAvailabilityRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

167

HIT

PENDING SUSPENDED

ABORTED

CANCELED

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

CREATE_REQUEST_INITIAL_STATECreateRequest - State Diagram

Lifetime_Expires or
Deleted_via_Request_Manager

Lifetime_Expires

Start_Processing_Create_Request

Canceled_by_Client

Lifetime_Expires

Deleted_via_Request_Manager

Queue_Request

Start_Processing_Create_Request

*

*

*

TRANSFER_COMPLETE

*

G-8 UML Statechart CreateRequest (j/NPS)

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

168

INGEST_REQUEST_DELETED

PENDING SUSPENDED

ABORTED

CANCELED

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

INGEST_REQUEST_INITIAL_STATEIngestRequest - State Diagram

Lifetime_Expires
Lifetime_Expires

Start_Processing_Ingest_Request

Canceled_by_Client

Lifetime_Expires

Deleted_via_Request_Manager

Queue_New_Ingest_Request

Start_Processing_Ingest_Request

Bulk_Pull_or_Bulk_Push_Ready

*

*

*

G-9 UML Statechart IngestRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

169

SUBMIT_QUERY_ORDER_REQUEST_INITIAL_STATE

SubmitQueryOrderRequest - State Diagram

PENDING

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

SUSPENDED

ABORTED

CANCELED

SUBMIT_QUERY_ORDER_REQUEST_DELETED

Queue_New_Query_Order_Request

Start_Processing_Order

Start_Processing_Order

Query_Order_Completely_Processed

Lifetime_Expires Lifetime_ExpiresLifetime_Expires

Deleted_via_Request_Manager

*

*

*

*

Some Results
Available

All results retrieved
from current Op Cycle

G-10 UML Statechart SubmitQueryOrderRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

170

SUBMIT_QUERY_REQUEST_DELETED

SUBMIT_QUERY_REQUEST_INITIAL_STATE

PENDING

IN_PROGRESS

RESULTS_AVAILABLE

COMPLETED

SUSPENDED

ABORTED

CANCELED

SubmitQueryRequest - State Diagram

Queue_New_Submit_Query_Request

Start_Processing_First_Op_Cycle

Start_Processing_Next_Op_Cycle

No_Results_Found

Some_Results_Available

All_Results_Retrieve_for_Current_Op_Cycle

All_Results_Computed_Last_Cycle
Canceled_by_Client

Lifetime_ExpiredLifetime_Expires

Lifetime_Expires
Deleted_via_Request_Manager

*

*

*

Trigger only first time state is entered

G-11 UML Statechart SubmitQueryRequest

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

171

Appendix H: Points of Contact

NIMA/ATSR

Ron Burns, National Imagery and Mapping Agency

Phone: 703.755.5630

Email: BurnsR@nima.mil

NIMA/ATSRI

Bill Young, National Imagery and Mapping Agency

Phone: 703.755.5644

Email: YoungW@nima.mil

USIGS Interface Definition & Implementation

Charlie Green, SI, Engineering Edge Alliance (Sierra Concepts, Inc).

Phone: 610.347.0602

Email: cpg.sci@mindspring.com

UCOS & GIAS Specifications, RFCs & Support

Dave Lutz, The MITRE Corporation

Phone: 703.883.7848

Email: dlutz@mitre.org

USIGS Interoperability Profile (UIP)

Bradley Bretzin, SI, Engineering Edge Alliance (Booz•Allen & Hamilton)

Phone: 703.375.2034

N0101-G UNCLASSIFIED 6 August 2001

UNCLASSIFIED

172

Email: bretzinb@bah.com

