NO0101-G UNCLASSIFED

Geospatial and Imagery Access

Services Specification

6 August 2001

National Imagery and Mapping Agency

United States Imagery and Geospatial Information Service

Version3.5.1

6 August 2001

UNCLASSIFHED

NO0101-G UNCLASSIFED 6 August 2001

Acknowledgments

Many individuals and organizations provided support and technical contributions to thiswork, Individuals
from numerous government agencies, contractor organizations and vendors contributed significantly to the
development of this specification. We acknowledge these contributions and hope that these individual s and
organizationswill continue to actively support future updates and extensions. Thanks in advance.

UNCLASSIFIED

NO0101-G UNCLASSIFED 6 August 2001

Revision History
Image Access Facility, Version 0.1 Straw 23 May 1995.
Image Access Facility, Version 0.2 Tin 11 June 1995.
Image Access Facility, Version 0.3 Aluminum 19 June 1995.
Image Access Facility, Version 0.4 Copper - For USIS release June 21, 1995.

Image Access Facility, Version 0.5 Nickel - Preliminary draft release for Image Access Working
Group (IAWG) June 29, 1995.

Image Access Facility, Version 0.6 Iron - Thisrelease contained arelatively complete description of
semantics and sequencing for sample implementation prototypers. July 12, 1995.

Image Access Facility, Version 0.7 Silver - This release addressed comments received. September 6,
1995.

Image Access Facility and Catalog Access Facility, Version 0.8 Gold - Thisrelease contained
extensions based upon the additional architecture mining. February 8, 1996.

Image Access Facility and Catalog Access Facility, Version 0.85 Gold Interim - Update for release
and comment on March 22, 1996.

Image Access Services Specification, Version 0.9 Platinum - Revisions based upon comments from
Core Team Working Group, April 24, 1996.

Image Access Services Specification Version 1.0 - ICCB Configuration-controlled, pilot operational
specification for contractor and commercial prototyping and interoperability testing, June 20, 1996.

Image Access Services Specification Version 1.1 -

Revised to remove TBR’s and TBDs concerning the PNF and I DF. Released for comments
December 6, 1996

Image Access Services Specification Version 1.1 -
Approved by ICCB December 20, 1996.

Name of document changed to Geospatial and Imagery Access Services Specification. Version
number set to 3.0 to reflect extensions and updates for inclusion of geospatial data and operations.

Geospatial and Imagery Access Services Specification
Version 3.0 - Released for NCCB submittal 22 July 1997

Geospatial and Imagery Access Services Specification Version 3.1. Includes updates to incorporate
responses and comments from additional interface prototyping tests. Released for NCCB submittal
4 February 1998.

Geospatial and Imagery Access Services Specification Version 3.2A. Released on 2 October for 24
November NCCB. Part of RFC N01-0085.

Geospatial and Imagery Access Services Specification Version 3.3. Released on 9 November for 24
November NCCB. Part of RFC N01-0085. Incorporates mods resulting from review and UIP WG, 3-4
November 1998.

Geospatial and Imagery Access Services Specification Version 3.3. Approved on 24 November at
NCCB. Aspart of RFC N01-0085. Approval date annotated to document.

UNCLASSIFIED

NO0101-G UNCLASSIFED 6 August 2001

Geospatial and Imagery Access Services Specification Version 3.3. Approved on 22 June 1999 at
NCCB. As part of RFC N01-0114, E2.0 As Built Baseline. Approval date annotated to document.

Geospatial and Imagery Access Services Specification Version 3.4. Draft released on 4 June as part
of RFC N01-0127 for E2.5 UIP Baseline Update. Additional mods incorporated on 5 August as part
of RFC Mod Package.

-~ Geospatial and Imagery Access Services Specification Version 3.4. Approved on 24 August 1999 at
NCCB. Aspart of RFC N01-0127, E2.5 Baseline. Approval date annotated to document-

Geospatial and Imagery Access Services Specification Version 3.5. Final Draft released on 18
February 2000 as part of RFC N01-0148 for UIP Baseline Update for the NE028/NEQ022 era. Update
released on 18 February 2000 based on results of 19 January 2000 UIP/API Final Draft

RFC N01-0148 withdrawn. GIAS Version 3.5. Final Draft re-released on 21 April 2000 as part of RFC
N01-0203 for UIP Basdline Update for NEO49/NEO28/NEQ22 effectivities.

Geospatial and Imagery Access Services Specification Version 3.5. Final Release dated 26 June
2000. Approved by NCCB on 26 June 2000 as part of RFC N01-0203J.

Geospatial and Imagery Access Services Specification Version 3.5.1 Final Release dated 6 August
2001. Approved by NCCB on 6 August 2001 as part of RFC N01-0268.

UNCLASSIFIED

NO0101-G UNCLASSIFED 6 August 2001

Planned Releases
Regular updates at gpproximately sx-month intervals or as needed.

UNCLASSIFIED

iv

NO0101-G UNCLASSIFED 6 August 2001

Preface

This document defines common interfaces and datatypes that are expected to be used by many other United
States Imagery and Geospatial Information Service (USIGS) interface specifications. The intent of this
specification isto document the interfaces, datatypes and error conditions that are expected to most
commonly occur or be most broadly applicable across the USIGS architecture. The use of these common
definitions will support interoperability among the various interface specifications in the USIGS architecture.

This specification was prepared consistent with industry practices and is modeled after those being
prepared by the Object Management Group (OMG) industry consortium. This approach is also consistent
with guidelines and direction established by NIMA through its Architecture and Standards processes.

UNCLASSIFIED

Vv

NO0101-G UNCLASSIFED 6 August 2001

Table of Contents

1 OVERVIEW 1
1.1 Background 1
1.2 Overview 1
2. INTERFACE OVERVIEW 6
2.1. Overview 6
2.2. Data Types 7
2.2.1. USIGS Common Objects 7
2.2.2. GIAS Specific Data Types (j/NPS) 8
2.2.3. GIAS Simple Data Types (j/NPS) 25

2.3. Interfaces
2.3.1. Library (j/INPS)
2.3.2. LibraryManager
2.3.3. RequestManager (j/NPS)
2.3.4. AccessManager
2.3.5. OrderMagr
2.3.6. DataModelMgr
2.3.7. StandingQueryMgr
2.3.8. CreationMgr (j/NPS)
2.3.9. UpdateMgr
2.3.10. CatalogMgr
2.3.11. ProductMgr
2.3.12. IngestMgr
2.3.13. QueryOrderMgr
2.3.14. VideoMgr

IBIB2BECHEBBRRN

2.3.15. Request (j/NPS) 70
2.3.16. CreateM etaDataRequest 74
2.3.17. SetAvailabilityRequest 75
2.3.18. GetRelatedFilesRequest 76
2.3.19. CreateRequest 76
2.3.20. UpdateReguest 77
2.3.21. SubmitQueryRequest 78
2.3.22. SubmitStandingQueryRequest 80
2.3.23. HitCountRequest 86
2.3.24. GetParametersRequest 87
2.3.25. IngestRequest 88
2.3.26. OrderRequest 89
2.3.27 SubmitQueryOrderRequest 89
2.3.28. CreateA ssociationReguest 91

UNCLASSIFIED

Vi

NO0101-G UNCLASSIFED 6 August 2001

2.3.29. UpdateByQueryRequest 92
2.4. Exceptions 93
2.4.1. Exception Model 93
2.4.2 InvalidlnputParameter Exceptions (j/NPS) 93
2.4.3 ProcessingFault Exceptions (j/NPS) 100
2.4.4 SystemFault Exceptions (j/NPS) 100
3. CALLBACK (J/NPS) 101
3.1. Callback (j/NPS) 101
3.1.1. notify (j/NPS) 101
3.1.2. release (j/NPS) 102
4. BOOLEAN QUERY SYNTAX 103
4.1. Overview 103
4.2. BQSDesign 103
4.3. BNF definition 103
4.4. Rulesand Constraints 108
4.4.1. Operator Precedence 108
4.4.2. Units 109
4.4.3. Strings and Wildcards 100
4.4.4. BQSand UCOS/GIAS Types 100
4.4.5. Deriving attribute names from data model 113
4.4.6. Attribute Name Syntax Rule 113
APPENDIX A: GIAS IDL 114
APPENDIX B: CALLBACK IDL 154
APPENDIX C UML DIAGRAMS 155
APPENDIX D REFERENCE OMG STANDARD IDL 157
APPENDIX E CORBA STANDARD EXCEPTIONS 157
APPENDIX F ACRONYMS 159
UNCLASSIFIED

Vi

NO0101-G UNCLASSIFED 6 August 2001

APPENDIX G: UML STATECHART DIAGRAMS 160

APPENDIX H: POINTS OF CONTACT 171

UNCLASSIFIED

viii

NO0101-G UNCLASSIFED 6 August 2001

1 Overview

1.1 Background

The Geospatial and Imagery Access Services (GIAS) specification defines the core interfaces of the United
States Imagery and Geospatial Service (USIGS) libraries for client access to geospatial information. USIGSis
asingle and integrated system, which is evolving from multiple systems to support the Imagery and
Geospatial Community (IGC) inthe US Government's acquisition and production of imagery, imagery
intelligence, and geospatial information. USIGS has a common information management framework that
enables sharing of data, services, and resources among |GC members and their consumers

The GIAS provides client access, which includes search, discovery, browsing, and retrieval of information
and its associated meta-data. Geospatial information is defined to include imagery and imagery-based
information, maps, charts and any other data that has a well-defined association with a point or areaon the
Earth.

1.2 Overview

The GIAS interfaces are specified using the Object Management Group (OMG) Interface Definition
Language (IDL). IDL isalanguage-independent notation for specifying software interfaces. IDL can be
readily compiled into software interfaces for various programming languages including C, C++, Java, Ada95,
and Smalltalk.

To help the reader assimilate the GIAS specification, a series of figures are presented providing varying
levels of details concerning the GIASinterfaces structure and usage. At the highest level of abstraction, the
GlASinterfaces are partitioned into four activity categories: library; request managers; request objects; and
callback/product objects. Figure 1-1 shows how the GIAS interface is structured and what are its activity
categories.

NO0101-G UNCLASSIFED 6 August 2001

Librar
— > y
Ancestor Manager
I nformation Sdection
—_ 4_
M anager

— —)
; Categories
: f
: Request o
: Ancestqr Submittal Activities
: I nformation
—_— ¢
s Request

- \\
Pt ‘: Request NN
7 AN M anipulation/Retrieval <.
,")(\ \\ N
- Y \
- . LY
Callback Polling Blocking Products
e

Figure1-1 GIAS Interface Structural and Activity Models

Figure 1-2is based on the notion that a GIAS client requires accessto a Library, which is accessible through
the GIAS interfaces. The GIAS client interacts with the Library to select and request access to a manager of
aspecific type. (“manager selection activity category”). Using the provided Manager the client can submit
requests for the Library to perform tasks (“request submittal activity category”). Each request submittal
returns a Request object. The GIAS client then uses the Request object to monitor progress on the task and
to retrieve the results. The Request object also provides a mechanism (a Callback) to allow aclient to be
notified of the progress of the task. The GIAS client can aso obtain information (* ancestor information
activity category”) on aspecific request or manager. ThisallowsaGIAS client to determine for any Request,
the Manager that is managing it and for any Manager determine the Library(s) it services.

Figure 1-2 provides another view of the GIAS interface specification asaUML class diagram. This class
diagram represents a static GIAS interface structure which is partitioned by four abstract interface classes:
LibraryManager; AccessManager; RequestManager; and Request. The LibraryManager represents an
instance of the specific Library being accessed by the client for requesting products. In addition,
specializations of the abstract classLibraryManager provide access to search aLibrary catalog, query for
productsin the Library, discover elements of adata model in use by the Library, and archive new products
into the Library.

The AccessManager provides operations for a client to “monitor” the status of a Library request for a
specific product. In addition, specializations of the abstract class AccessManager provide operations for
specific products or data sets such as: orders for products, retrieval of tiled products, determination of the
characteristics of aspecific product or data set, bulk transfer of datafrom a Library, and video products
(N.B., this capability is currently not implemented).

NO101-G

UNCLASSIFIED

6 August 2001

The RequestManager provides operations for requested products or data sets. The RequestManager
provides selector and modifier operations for arequest instance, which is a specialization of the abstract
interface Request. The set of request instancesis shown in Figure 1-2.

Access to request operations submitted by the client can be transmitted to the Library by polling the Library
requested object (i.e., asynchronous), blocking (i.e., synchronous) the client until the Library requested
object isavailable, or requesting a Callback event when Library requested object is available.

<<Interface>>
AccessManager
(from GIAS)

A

<<Interface>>
ProductMgr
(from GIAS)

<<Interface>>
RequestManager
(from GIAS)

A

<<Interface>>

OrderMgr
(from GIAS)

<<Interface>>
Library
(from GIAS)

<<Interface>>
LibraryManager
(from GIAS)

:] DataModelMgr

<<Interface>>

(from GIAS)

<<Interface>>
CatalogMgr
(from GIAS)

<<Interface>>
StandingQueryMgr
(from GIAS)

<<Interface>>
CreationMgr

<<Interface>>
QueryOrderMgr

<<Interface>>
IngestMgr
(from GIAS)

(from GIAS)

<<Interface>>
UpdateMgr
(from GIAS)

(from GIAS)

<<Interface>>

SubmitQueryOrderRequest

(from GIAS)

(from GIAS)

<<Interface>>
CreateRequest

<<Interface>>
OrderRequest
(from GIAS)

<<Interface>>
GetParametersRequest
(from GIAS)

<<Interface>>

CreateMetaDataRequest
(from GIAS)

SubmitQueryRequest
(from GIAS)

<<Interface>>

)

Request

<<Interface>>
IngestRequest
(from GIAS)

|

<<Interface>>
HitCountRequest
(from GIAS)

(from GIAS)

<<Interface>>|

<<Interface>>
GetRelatedFilesRequest
(from GIAS)

<<Interface>>
SubmitStandingQueryRequest
(from GIAS)

<<Interface>>
CreateAssociationRequest

<<Interface>>

(from GIAS)

SetAvailabilityRequest

<<Interface>>
UpdateRequest
(from GIAS)

(from GIAS)

<<Interface>>
UpdateByQueryRequest
(from GIAS)

Figure 1-2 UML Static Class Diagram of GIAS Interface Structure

NO0101-G UNCLASSIFED 6 August 2001

The following three sequence diagrams outline three scenarios for interactions between aclient and GIAS
Requests: Blocking, Polling and Callback.

Figure 1-3 provides the sequence for blocking requests made by GIAS clients. The scenario isinitiated by
the GIAS Client inquiring and obtaining alist of what types of Managers are available from the GIAS
Library. Upon receiving and evaluating thelist, the GIAS Client selects a Manager type (SampleMgr) and
requests access to a Manager object of that type from the GIAS Library. The GIAS Client uses this Manager
to submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. The client
then calls“ complete” on the Request and is blocked until all processing is completed.

Figure 1-4 provides the sequence for polling requests made by GIAS clients. The scenario isinitiated by the
GIAS Client inquiring and obtaining alist of what types of Managers are available from the GIAS Library.
Upon receiving and evaluating the list, the GIAS Client selects a Manager type (SampleMgr) and requests
access to aManager object of that type from the GIAS Library. The GIAS Client uses this Manager to
submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. The client
then calls “get_status’ repeatedly until the status returns as COMPLETE. The client then calls “ complete’
to complete the Request.

Figure 1-5 provides the sequence for “callback” requests made by GIAS clients. The scenario isinitiated by
the GIAS Client inquiring and obtaining alist of what types of Managers are available from the GIAS
Library. Upon receiving and evaluating thelist, the GIAS Client selects a Manager type (SampleMgr) and
requests access to a manager object of that type from the GIAS Library. The GIAS Client uses this Manager
to submit requests (send_request). The SampleMgr returns a SampleRequest object to the client. In this
scenario, the GIAS Client is associated with a Callback object. It registersthis Callback object with the
SampleRequest. When the SampleRequest compl etes, SampleRequest invokes “ notify” on the Callback
object.

Client GIAS : Library SampleManager : SampleRequest :
ReguestManager Request

I get_manager_types() I
| |

get_manager()

send_request()

complete()

Figure 1-3 UML Use Case Sequence Diagram for a GIAS Blocking Scenario

NO0101-G

UNCLASSIFIED 6 August 2001
RequestManager Request
| get_manager_types() |
g
] get_manager()
1]
-I send_request()
1]
5 getl_status()
repeat get_status()
until status= j /U
COMPLETE
cqmplete()
gl

Figure 1-4 UML Use Case Sequence Diagram for a GIAS Palling Scenario

Client GIAS : Library SampleManager : : Callback SampleRequest :
RequestManager Request
| get_manager_types() |
,’i 1
'TI
I
I get_manager() I
l =,
L
|
L [
I send_request()
.’iI_I
|
7 register_callback()
il
)
notify()
L T
1 L
complete() T
[pCan |
i i
i T
L I
|
|
|
|
|
[

Figure 1-5 UML Use Case Sequence Diagram for a GIAS Callback Scenario

NO0101-G UNCLASSIFED 6 August 2001

2. Interface Overview

2.1. Overview

The GIAS specification defines, through the use of OMG IDL, the interfaces, datatypes and error
conditions that represent a geospatial information Library. A GIAS-based geospatial Library hasinterfaces
that allow aclient to search and discover information (data sets/products) contained in the Library, inquire
about details of aparticular data set/product and arrange for the delivery of the data set/product to another
location or to another system. Also provided are interfaces to allow aclient to nominate information to be
included in the Library. There are aso interfacesto allow Library-to-Library interchange of information as
well asinterfaces that support management and control of the client-library interactions.

The GIAS specification does NOT define interfaces for functions such as: locating Libraries with specific
characteristics (thisisthe function of a Trading service), requests for the collection or acquisition of
information not in aLibrary (thisisthe function of acollection requirements system), management of the
underlying communication and other infrastructure or requests for processing of information not directly
related to the search or delivery of information (thisisthe function of the exploitation and production
systems).

The definitions and semantics associated with the elements of the GIAS specification are intended to be as
general and as broadly useful as possible. It is not intended to be a description of any single implementation
or system but isintended to allow great latitude in the design and implementation schemes for geospatial
Libraries. However, to ensure interoperability, all systemsthat must interoperate must make the same
interpretations concerning this general specification. A profile of the GIAS specification for the intended
community of useisacritical supplement to the GIAS specificationitself. A profileisaformal
documentation of the specific interpretations, limits, and conventions chosen by the community of use. The
USIGS community will be producing profiles of the GIAS specification that document these factors.

The following sections detail the interfaces, datatypes and error conditions that compose the GIAS
interface definition.

All elements of the GIAS definition are contained in the GIAS module, which identifies and defines data
types, interfaces, operations, and exceptions.

Theinterfaces defined in GIAS use the exception model defined in USIGS Common Object Services (UCQOS)
Specification. That specification defines ageneral purpose model which the GIAS specification extends by
defining a set of error condition identifiers (string constants) (see section 2.4 for these string constants). In
the interface definitions that follow, the GIAS-specific error conditions that an interface may return are
identified by 1) defining the set of UCOS general purpose exceptions that may be returned and 2) listing the
set of GIAS-specific error condition identifiers that may be returned inside one of these UCOS defined
general purpose exceptions.

modul e Gl AS

{

all 3 AS el enents

UNCLASSIFHED

6

NO0101-G UNCLASSIFED 6 August 2001

2.2. Data Types
2.2.1. USIGS Common Objects

In order to support interoperability among the components of the USIGS architecture, the most common or
most broadly useful datatypes, interfaces, operations, and exceptions (i.e., error conditions) have been
defined and collected into the USIGS Common Object (UCO) Specification. Theintentisfor al USIGS
specifications to draw upon the UCO definitions when appropriate rather then redefine a common element.
In order to support interoperability, the GIAS specification uses the definitionsin the UCO whenever they
are appropriate. The specific UCO entities that GIAS uses are detailed below. The definitions given are
descriptions of how GIAS uses these entities and are not intended to replace the definitions specified in the
UCO. Only cases where the UCO datatypeis used as an element of a GIAS datatype are detailed below. For
cases where the UCO element isused in a GIAS operation, itsintended use is defined in the text
accompanying each operation. All GIAS operations are defined in section 2.3.

2.2.1.1. PropertyList

t ypedef UCO : NaneVal ueli st PropertylList;

The PropertyList is atypedef of UCO::NameVauelist structure, which is re-used to hold the name value
pairs (Properties) that are used to augment or clarify many of the operations of the RequestM anager.

2.2.1.2. GeoRegion and GeoRegionType
t ypedef UCO : Rect angl e GeoRegi on;
enum GeoRegi onType {
LI NE_SAMPLE_FULL,
LI NE_SAMPLE_CHI P,
LAT_LON,
ALL,

NULL_REGI ON} ;

UNCLASSIFHED

7

NO0101-G UNCLASSIFED 6 August 2001

The GIAS specification uses the GeoRegion data type to define geospatial subsections of products or data
sets. Currently the only type of subsection allowed is rectangular. The GIAS specification thus defines
GeoRegion based on the UCO:: Rectangle. The GeoRegion type upper_left component is defined as the first
column/row in the Chippable Image. The enumeration GeoRegionType indicates the type of coordinate
system used by a GeoRegion:

LINE_SAMPLE_FULL — Animage coordinate system defined by the original full resolution image;

LINE_SAMPLE_CHIP - An image coordinate system defined by an image which has been extracted
from alarger image;

LAT_LON — A geographic coordinate system expressed in decimal degrees (x = latitude y=longitude).
The convention used in this specification isthat a positive value for latitude or longitude indicates a
northern/eastern direction and a negative value indicates a southern/western direction.

ALL —The special case of a GeoRegion that includes the entire product or data set.
NULL_REGION — The special case of anull or empty GeoRegion

2.2.1.3. Statusand State (j/NPS)

The GIAS specification uses the State enumeration defined in UCO paragraph 2.2.4 to identify the state of
Request objects. The specific states and state transitions that the concrete Request objects may use are
defined in Appendix G.

2.2.2. GIAS Specific Data Types (j/INPS)

The GIAS specification defines a number of datatypes that are specific to the GIAS. The definitions of the
specific types are given in the following sections.

2.2.2.1. AvailabilityRequirement, and UseM ode

The types described in this subsection are used exclusively by the AccessManager.

enum Avai | abi | it yRequi r enent

{
REQUI RED, NOT_REQUI RED

b

UNCLASSIFHED

8

NO0101-G UNCLASSIFED 6 August 2001

The enumeration AvailabilityRequirement is used by the AccessManager to determineif the request isto
place a product into a certain mode (REQUIRED) or arequest for a product to be removed from a certain
mode (NOT_REQUIRED).

typedef string UseMbde;

UseModeis astring that describes a purpose or intended use of adata set or product. It isused by the
AccessManager to support client requests and monitoring of the readiness of products for their use.

2.2.2.2. Order Type, ProductSpec, ProductFormat, AlterationSpec, PackagingSpec,
ImageFormat, Compression, BitsPer Pixel, Algorithm, SupportDataEncoding,
ProductFormatList, ImageSpec, |mageSpecL ist, ImageUniquel dentifier and
AlternationSpecL ist

The types described in this subsection are used by the OrderMgr to describe the details of an order. An
order isarequest to have one or more products delivered from aLibrary to one or more destinationsin one
or more specific forms.

enum Or der Type { STANDI NG, | MVEDI ATE} ;

Thistypeis used to distinguish between an immediate order which is to be performed once based on the
current state of the Library and a standing order which isto be performed repeatedly until the order lifetime
expires.

t ypedef string Product For nmat;

Thistype identifies the specific product format.

typedef string | nmageFormat;

Thistype identifies the specific image format.
t ypedef string Conpression;

Thistype identifies the compression type.

t ypedef short BitsPerPixel;

Thistype identifies the number of bits of datain an uncompressed pixel.

UNCLASSIFHED

9

NO0101-G

UNCLASSIFED 6 August 2001

typedef string Algorithm

Thistypeidentifies the algorithm to be used for alteration.

typedef string | mgeUni queldentifier;

This typeidentifies the unique image identification that can be used for ordering a set of images.

t ypedef any Product Spec;

The ProductSpec will contain one of the following specialized product format structures: ImageSpec or

ImageSpecList.

Enum Support Dat aEncodi ng {ASCI |, EBCDI C};

t ypedef sequence < Product Format > Product For mat Li st ;

struct

{

| mageSpec

| mgeFor mat i ngform

| mgeUni quel dentifier imgeid;
Conpr essi on conp;

Bi t sPer Pi xel bpp

Al gorithm al go;

Rset Li st rrds;

GeoRegi on sub_secti on;

GeoRegi onType geo_regi on_type;

Support Dat aEncodi ng encodi ng;

t ypedef sequence < | nageSpec > | mageSpeclLi st;

UNCLASSIFHED

10

NO0101-G UNCLASSIFED 6 August 2001

struct Alterati onSpec

{

Product For mat pf;

Pr oduct Spec ps;

GeoRegi on sub_secti on;

GeoRegi onType geo_regi on_type;
3

t ypedef sequence < Alterati onSpec >
Al terati onSpecli st;

This structure describes detail s of how aproduct isto be altered before being delivered. There are three
types of alterationsthat can be specified:

1. The element pf indicates the desired choice of a specific data and compression format.

2. The element ps contains alteration details specific to the specific product format

3. The element sub_section contains a geographically defined subsection of the whole product.
4

The element geo_region_type defines the type of coordinate system in element sub_section

struct Packagi ngSpec
{

string package_identifier;

string packagi ng_format _and_conpressi on;

s

The PackagingSpec defines characteristics of the data package that are sent to the client. This package may
contain one or more productsin the requested form. The PackagingSpec allows a client to specify:

1. Anidentifier for the package (package_identifier) so the client can identify the package when it
arrivesand

UNCLASSIFHED

11

NO0101-G UNCLASSIFED 6 August 2001

2. A choice of specific format and compression type for the package
(packaging_format_and_compression).

2.2.2.3. TailoringSpec
struct TailoringSpec {
UCQO: : NameNaneLi st specs;
3

The TailoringSpec structure defines the information required to describe processing or modificationsto be
doneto an ordered product by the Library prior to being sent to the client. The TailoringSpec contains a
NameNameL ist where each NameName pair includes an identifier for a processing step in the first Name and
any parametersfor that step in the second Name.

2.2.2.4. Destination, DestinationType, and DestinationList

enum Destinati onType

{
FTP, EMAI L, PHYSI CAL

H

uni on Destination switch (DestinationType)

{
case FTP: UCGO : Fil eLocation f_dest;
case EMAI L: UCO: : Emai | Address e_dest;

case PHYSI CAL: Physi cal Del i very h_dest;

H

typedef sequence < Destination > DestinationList;

UNCLASSIFHED

12

NO0101-G UNCLASSIFED 6 August 2001

These types describe the details of a destination for an order. The enumeration DestinationType describes
the three choices for delivery modes. Mode FTP indicates the package will be sent electronically viaan FTP
(or similar) mechanism, mode EMAIL indicates that the package will be sent viaan e-mail enclosure and
mode PHY SICAL indicates a hardcopy or physical mediawas ordered and will be delivered physically.

The structure Destination defines the data type that must be provided when the above-defined modes are
selected. Element f_dest indicates the location for FTP type deliveries, element e_dest contains an email
addressfor EMAIL typedeliveries, and h_dest contains a Physical Delivery structure that contains the
detailsrequired for aPHY SICAL type delivery

The sequence DestinationList is used to provide a set of destinationsasasinglelist.

2.2.2.5. MediaType and MediaTypelList

struct Medi aType
{

string nmedia_type;
unsi gned short quantity;

H

typedef sequence < Medi aType > Medi aTypeli st;

This data structure specifies the mediatype of the data set or product ordered by aclient. This attribute of
an order isonly relevant for a DestinationType type of PHY SICAL.

2.2.2.6 PhysicalDélivery

struct Physical Delivery
{

string address;
3
UNCLASSIFIED

13

NO0101-G UNCLASSIFED 6 August 2001

This structure defines the details for an order which isto be delivered physically to the receiver rather than
electronically.

2.2.2.7. ValidationResults and ValidationResultsL ist

struct Validati onResults

{

bool ean val i d;
bool ean war ni ng;

string details;
3

typedef sequence < ValidationResults >
Val i dati onResul t sLi st ;

The data structure ValidationResults is used by the OrderMgr to validate orders before submitting by the
order operation. The structure indicates the validity of a proposed order and information concerning the
proposed order. A validated order will be judged to bein one of three states: valid, invalid or valid with
warning. If the value of the data element “valid” is* TRUE”, then thisindicates that the order isvalid. If the
value of the dataelement “valid” is“FALSE”, thisindicates that the order has been judged to be invalid and
the value of the data element “ details’ is a human readable and interpretabl e string that explains why the
order isinvalid. The additional data element “warning” is used in combination with the “valid” boolean to
indicate that awarning has been noted. The table below summarizes the states of ValidationResults.

UNCLASSIFHED

14

NO0101-G UNCLASSIFED 6 August 2001

Table 2-1 Validation Results Table

Warning Valid
True False
True Details contains warning Details contains explanation
message of proposed order of invalid order
False Details not applicable Details contains explanation
of invalid order

2.2.2.8. RelatedFileType, RelatedFileTypelList, RelatedFile & RelatedFilelList

typedef UCO : Nane Rel at edFi | eType;

t ypedef sequence<Rel at edFil eType>
Rel at edFi | eTypeli st;

struct Rel atedFile
{
Rel at edFi | eType fil e_type;
UCO: : Fil eLocation | ocation;
b

t ypedef sequence <Rel atedFil e> Rel at edFi |l eLi st ;

The RelatedFileType is used by the ProductMgr get_related filesto provide accessto arbitrary
datasets/files related to a specified Product.

The structure RelatedFile defines arel ationship between afile instance located at location and a
RelatedFileTypeinfile type. RelatedFileList provides a sequence of these structures. These structures are
used by the CreationMgr to support the specification of related files when defining a product for creation.

UNCLASSIFHED

15

NO0101-G UNCLASSIFED 6 August 2001

2.2.2.9. Conceptual AttributeType, Entity, DomainType, DateRange, | nteger Range,
FloatingPointRange, Domain, AttributeType, RequirementM ode, Attributel nformation,
Association, ViewName, ViewNamelList, View, ViewList, I nteger RangelL it,
FloatingPointRangel ist, AssociationL ist, and Attributel nformationList

The datatypes listed in this subsection are utilized by the DataModelMgr . The DataModelMgr uses the
idea of a Conceptual Attribute to remain datamodel neutral. A conceptual attribute is an attribute that
serves asalabel for aconcept that is likely to be present in metadata models of interest and which needsto
be discovered by theclient. It isin essence aminimal meta-metadata model. For each metadata model of
interest, each conceptual attribute can either be mapped to asingle logical attribute or is not supported.

enum Conceptual Attri buteType
{
FOOTPRI NT, CLASSI FI CATI ON, OVERVI EW THUMBNAI L,
DATASETTYPE, MODI FI CATI ONDATE, PRODUCTTI TLE,
DI RECTACCESS, DI RECTACCESSPROTOCOL,
UNI QUEI DENTI FI ER, DATASI ZE
b

This datatypeis used by the DataM odel M gr selector operation get_logical_attribute_name to obtain the
logical attribute name that is the equivalent of the Conceptual AttributeType. The Conceptual AttributeType
exhaustively enumerates all conceptual attribute types. The definition,valid datatypes and domain for each
of the Conceptual Attributes are defined in the following table:

ConceptualAttribute Description Valid Data types Domain
FOOTPRINT Describesa UCOQO::Coordinate2d | Entire domain of datatype
products UCOQO::Coordinate3d
geospatial UCO::LineString2d
location or UCO::LineString3d
bounds UCO:Polygon
UCO:PolygonSet
UCO::Rectangle
UCO::RectangleList
UCO::Circle
UCQO::Ellipse
CLASSIFICATION Indicatesthe CORBA::string Domain defined in appropriate GIAS
products profile
security
classification
UNCLASSIFIED

16

NO0101-G

UNCLASSIFED

6 August 2001

OVERVIEW

Indicatesthefile
name of the
product’s
overview
representation

CORBA::string

Entire domain of datatype

THUMBNAIL

Indicates thefile
name of the
product’s
thumbnail
representation

CORBA::string

Entire domain of datatype

DATASETTYPE

Indicates the
product’s type

CORBA::string

Domain defined in appropriate GIAS
profile

MODIFICATIONDATE

Indicates the
date the product
was last
modified

UCO::AbsTime
UCO:.Date

Entire domain of datatype

PRODUCTTITLE

Indicates the
textual title of
the product

CORBA:string

Entire domain of datatype

DIRECTACCESS

Indicatesthefile
location of the
product

UCQO::FileLocation

Entire domain of datatype

DIRECTACCESSPROTOCOL

Indicatesthe
transfer
protocol by
which the
product may be
retrieved

CORBA::string

Domain defined in appropriate GIAS
profile

UNIQUEIDENTIFIER

Indicates the
identifier which
uniquely
identifiesthe
product

CORBA::long
CORBA::string

Entire domain of datatype

DATASIZE

Indicates the
total data size of
the product

UCO::FileSze

Entire domain of datatype

typedef string Entity;

This data type represents the name of adata model entity.

typedef string ViewNane;

UNCLASSIFHED

17

NO0101-G UNCLASSIFED 6 August 2001

t ypedef sequence< Vi ewNane > Vi ewNanelLi st ;
struct View {

Vi ewNanme Vi ew _nane;

Vi ewNaneLi st subVi ews;

bool ean order abl e;
3

typedef sequence < View > ViewList;

These data types are used to define the identifier for aview (viewName) and to express the rel ationships of

viewsto other related views (subViews). It also indicates whether the contents described by the view can be
ordered.

enum Domai nType{

DATE_VALUE, TEXT_VALUE, | NTEGER_ VALUE,

FLOATI NG_PO NT_VALUE, LI ST, ORDERED LI ST,

| NTEGER_RANGE, FLOATI NG_PO NT_RANGE, GEOGRAPHI C,
| NTEGER_SET, FLOATI NG_PO NT_SET, GEOGRAPHI C_SET,
Bl NARY_DATA, BOOLEAN_VALUE

H

This datatype defines the equivalent of a mathematical domain, which is used in the data structure Domain.
struct Dat eRange

{
UCO: : AbsTine earl i est;

UCO: : AbsTi ne | at est ;
}s

This data structure defines the mathematical range for data that expresses a calendar date. It is used in the
data structure Domain.

UNCLASSIFHED

18

NO0101-G UNCLASSIFED 6 August 2001

struct | ntegerRange

{

| ong | ower _bound;
| ong upper _bound;
3

This data structure defines the mathematical range for integer, which is used in the data structure Domain.

struct Fl oati ngPoi nt Range

{

doubl e | ower _bound;

doubl e upper _bound,;
3
This data structure defines the mathematical range for floating point, which is used in the data structure

Domain.

typedef sequence < |IntegerRange > | ntegerRangeli st;

This data type definition represents a set of integer ranges, which is used in the data structure Domain.

t ypedef sequence < Fl oati ngPoi nt Range >
Fl oat i ngPoi nt RangelLi st ;
This datatype definition represents a set of floating point ranges, which is used in the data structure

Domain.

uni on Domain switch (Domai nType)

{

case DATE_VALUE: Dat eRange d;

case TEXT_VALUE: unsi gned |ong t;

case | NTEGER_VALUE: | nt eger Range iv;

case | NTEGER_SET: | nt eger RangelLi st is;

UNCLASSIFHED

19

NO0101-G UNCLASSIFED

case FLOATI NG PO NT_VALUE:
fv;

case LI ST:
case ORDERED LI ST:
case | NTEGER RANGE:

case FLOATI NG_PO NT_RANGE:
fr;

case FLOATI NG_PO NT_SET:
Fl oat i ngPoi nt RangelLi st f ps;

case GEOGRAPHI C:

case GEOGRAPHI C SET:
gs,

case BI NARY_DATA:

case BOOLEAN_VALUE:

H

6 August 2001

Fl oat i ngPoi nt Range

UCG: : NaneLi st | ;
UCQO: : NaneLi st ol ;
| nt eger Range ir;

Fl oat i ngPoi nt Range

UCQO. : Rect angl e g;

UCGO:. : Rect angl elLi st

UCGO: : Bi nDat a bd;

bool ean bv;

This data type associates a member of the set DomainType with a defined range.

enum Attri buteType
{

TEXT,
| NTEGER,
FLOATI NG_PO NT,
UCGOS_COORDI NATE,
UCOS_POLYGON,
UCOS_ABS_TI ME,
UCOS_RECTANGLE,
UCOS_SI MPLE_GS_| MAGE,

UNCLASSIFHED

20

NO0101-G UNCLASSIFED 6 August 2001

UCOS_SI MPLE_C_| MAGE,
UCOS_COMPRESSED_| MAGE,
UCOS_HEI GHT,
UCOS_ELEVATI ON,

UCOS_DI STANCE,
UCOS_PERCENTAGE,
UCOS_RATI O,
UCOS_ANGLE,

UCOS_FI LE_SI ZE,
UCOS_FI LE_LOCATI ON,
UCOS_COUNT,

UCOS_WEI GHT,
UCOS_DATE,

UCOS_LI NESTRI NG,
UCOS_DATA_RATE,
UCOS_BI N_DATA,
BOOLEAN_DATA,

UCOS_DURATI ON

This datatype exhaustively enumerates all attribute types.
enum Requi r enent Mode

{
MANDATORY, OPTI ONAL

UNCLASSIFHED

21

NO0101-G

} .

UNCLASSIFED 6 August 2001

This data type defines the requirements mode for an attribute and is used as a component of the
Attributel nformation struct. The elements specify whether the attribute is optional or mandatory for
purposes of creation of a product.

struct Attributelnformtion

{

string attribute_nane;
AttributeType attribute_type;
Domain attri bute_donai n;
string attribute_units;
string attribute_reference;
Requi r enent Mode node;

string description;

bool ean sortabl e;

bool ean updat eabl e;

typedef sequence < Attributelnformation >
Attributel nformationLi st;

This datatype represents a set of characteristics that together describe an attribute. The syntax for the

attribute names

in fieldattribute_name isdefined in section 4.4.6. (Attribute Name Syntax Rul€)

struct Association {

string nane;

Vi ewNanme vi ew_a;

Vi ewName vi ew_b;

string description;
UNCLASSIFIED

22

NO0101-G UNCLASSIFED 6 August 2001

UCO. : Cardinality card,

Attributel nformationList attribute_info;
3
t ypedef sequence <Associ ati on> Associ ationLi st;

These data types are used by the DataM odel M gr to describe the relationships between views.

2.2.2.10. ProductDetails, ProductDetailsList, DeliveryDetails, DeliveryDetailsLigt,
OrderContents & QueryOrder Contents

struct ProductDetails {
Medi aTypelLi st nilypes;
UCQO : NameLi st benunmns;
Al terationSpec aSpec;
Ul D:: Product aProduct;
string info_system nane;
b

typedef sequence <ProductDetail s> ProductDet ai |l sLi st

struct DeliveryDetails {
Desti nation dests;
string receiver;
string shi pment Mode;
b

typedef sequence < DeliveryDetails > DeliveryDetailsList;

UNCLASSIFHED

23

NO0101-G UNCLASSIFED 6 August 2001

struct OrderContents {
string originator;
Tai |l ori ngSpec t Spec;
Packagi ngSpec pSpec;
UCQO : AbsTi me needByDat e;
string operatorNote;
short orderPriority;
Product Det ai | sLi st prod_Ilist;

Del i veryDet ai | sLi st del _list;

H

struct QueryoOrderContents {
string originator;
Tai | ori ngSpec t Spec;
Packagi ngSpec pSpec;
string operatorNote;
short orderPriority;
Al terationSpec aSpec;
Del i veryDet ai | sList del _Iist;
b

These data structures are used to describe the details of an order and a query (standing) order.

2.2.2.11. AccessCriteria (j/INPS)

struct AccessCriteria {

UNCLASSIFHED

24

NO0101-G UNCLASSIFED 6 August 2001

string userlD;
string password;

string |licenseKey;

H

The structure AccessCriteria contains the information used for access control of GIAS Library capabilities.

2.2.3. GIAS Simple Data Types (j/NPS)

The GIAS defines anumber of simple datatypes.

2.2.3.1. LibraryList, RequestList, Manager Type, Manager TypeList, UseM odelL i<t,
and RsetList (j/NPS)

typedef sequence < Library > LibrarylList;

typedef string Manager Type;

t ypedef sequence < Manager Type > Manager Typeli st;
typedef sequence < Request > RequestLi st;

typedef sequence < UseMbde > UselMbdeli st;

t ypedef sequence <short> Rset Li st;

The GIAS specification defines a number of convenience structures that are a sequence of other defined
types. LibraryList contains a sequence of references of type Library. ManagerTypeisastring.
ManagerTypeL.ist contains an unbounded sequence of ManagerType. RequestList contains a sequence of
references of type Request. RsetList contains a sequence of short integers. UseModeL.ist contains a
sequence of UseMode (UseModeistype String).

2.2.3.2. LibraryDescription and LibraryDescriptionList

struct LibraryDescription

{

UNCLASSIFHED

25

NO0101-G UNCLASSIFED 6 August 2001

string library_nane;

string library_description;

string library_version_nunber;
3

t ypedef sequence < LibraryDescription >
Li braryDescri ptionLi st;

The LibraryDescription structure contains the name of a specific Library instancein the string library _name.
The string Library_description contains a human readable description of the Library and its holdings. The
Library_version_number provides amechanism for clientsto determine the version of the GIAS
specification used by this specific library implementation. LibraryDescriptionList contains an unbounded
sequence of LibraryDescriptions.

2.2.3.3. Query

struct Query {

Vi ewNanme vi ew_nane;
string bgs_query;

H

The data structure Query is composed of aquery expression for a particular view of agiven data model.

2.2.3.5. QueryResults

typedef UCO : DAGLi st QueryResults;

The QueryResults structure is used to contain a collection of results from a catalog query. Each individual
result in this collection contains metadata that describes a data set or product and areference to that data
set or product in the form of a Product. The QueryResults structure re-uses the DAGList type defined in the
UCO specification. The set of results from a catalog query is expressed in a QueryResults structure by
applying the following rules:

1) Eachresult (catalog record or “hit”) consists of an identifier of a data set or product and a set of
metadata elements. Theidentifier will be in the form of aProduct reference for that data set. The
metadata elements will each consist of an attribute name and atype and value for that attribute and
the rel ationships among the metadata elements.

UNCLASSIFHED

26

NO0101-G UNCLASSIFED 6 August 2001

2) EachresultisplacedinitsownDAG.

3) Each metadataelement isplaced in its own node by setting the attribute_name of the node to
reflect the name of the metadata element and by setting the value of the node to reflect the type
and value of that metadata element.

4) The number, type and name for the relationshipsin a DAG are dependent on the data model that
underlies the catalog that generated the result and are thus i mplementation dependent.

2.2.3.6. LifeEventType, LifeEvent, NamedEventType, Event, EventList, DayEvent,
DayEventTime, LifeEventList, and QueryLifeSpan

enum Li f eEvent Type
{
ABSOLUTE_TI ME,
DAY EVENT_TI ME,
NAVED EVENT,

RELATI VE_TI ME
}s

uni on LifeEvent switch (LifeEventType)

{
case ABSOLUTE_TI ME: UCO: : AbsTi ne at;

case DAY _EVENT _TI ME: DayEventTime day_event;
case NAMED EVENT: string ev;

case RELATIVE TIME: UCO :Tine rt;

enum NanmedEvent Type

UNCLASSIFHED

27

NO0101-G UNCLASSIFED

{
START_EVENT,

STOP_EVENT,
FREQUENCY _EVENT
3
struct Event {

string event _nane;

NanmedEvent Type event type;

string event _description;

H

t ypedef sequence < Event > EventLi st;

enum DayEvent { MON, TUE, WED, THU, FRI,

FI RST_OF_MONTH, END_OF_MONTH };

struct DayEvent Ti nme
{

DayEvent day_ event;

UCO : Ti ne time;

typedef sequence < LifeEvent > LifeEventlList;

UNCLASSIFHED

28

6 August 2001

SUN,

NO0101-G UNCLASSIFED 6 August 2001

struct QueryLifeSpan {
Li feEvent start;
Li feEvent stop;

Li feEvent Li st frequency;

These data structures are used by a client when interacting with the StandingQueryMgr and
QueryOrderMgr to identify and describe events that can be used to establish the lifetime of a standing
query. These Managers can be used to establish the lifetime of a standing query and how frequently itis
run, by setting these elements. They allow an event in the lifetime of a query to be defined as one of the
following: 1) an absolute time (e.g., start on 12 Jan 99); 2) an event; or 3) arelative time. These types of life
events can be used to describe the start, stop points, and frequency of a standing query. NB: Not all
combinations of absolute, relative and event references with start, stop and frequency are meaningful.

2.2.3.7. Polarity, SortAttribute and SortAttributel ist

These data structures are used to indicate the sorting preferences of query results.

enum Pol arity { ASCENDI NG, DESCENDI NG };

struct SortAttribute

{

UCO: : Nane attri bute_nane;

Polarity sort_polarity;

t ypedef sequence < SortAttribute >
Sort Attri butelLi st;

UNCLASSIFHED

29

NO0101-G UNCLASSIFED 6 August 2001

2.2.3.8 DelayEstimate
struct Del ayEstimate {
unsi gned | ong tine_del ay;
bool ean valid tinme_del ay};

This structure returns an approximate time delay (i.e., time_delay) whenvalid_time_delay istrue.
Time_delay is not valid whenvalid_time_delay isfalse and should beignored by the client application.

2.2.3.9 PackageElement, PackageElementList, and DeliveryM anifest
struct PackageEl enment ({
Ul D: : Product pr od;
UCO: : NaneLi st files;
3

t ypedef sequence< PackageEl enent >
PackageEl enent Li st ;

struct DeliveryManifest {
string package_nane;
PackageEl enent Li st el enents;
b

t ypedef sequence<Del i veryManifest>
Del i veryMani f est Li st ;

These structures are used to describe the contents of adelivery. The DeliveryManifest contains the names

of the package (package_name) and alist of PackageElement structures. Each of these PackageElement

structures describes an element included in the package. A PackageElement describes a package element by

containing the UID::Product identifier and alist of the file names that make up that product as delivered.

2.2.3.10 Callbackl D (j/NPS)

UNCLASSIFHED

30

NO0101-G UNCLASSIFED 6 August 2001

typedef string Call backl D,

The datatype CallbackID isused as an identifier for an instance of a Callback. The specific details of this
datatype are found in the appropriate GIAS profile.

UNCLASSIFHED

31

NO0101-G UNCLASSIFED 6 August 2001

2.3. Interfaces
2.3.1. Library (j/INPS)

interface Library
{
Manager TypelLi st get _nmanager types ()

rai ses (UCO: : Processi ngFaul t,
UCQO. : SystenfFaul t);

Li braryManager get manager
(i n Manager Type nmanager _type,

I n AccessCriteria
access _criteria)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

Li braryDescription get _|ibrary _description ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

Li braryDescri ptionLi st get_other _|ibraries
(in AccessCriteria access_criteria)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

H

The Library interface serves as the starting point for any interaction with the rest of the Library. All
capabilities of alibrary system are accessed through the Manager objectsit supports. The Library interface

UNCLASSIFHED

32

NO0101-G UNCLASSIFED 6 August 2001

isthe mechanism by which aclient discovers and requests access to Manager objects. The operations
defined inthe Library interface are described in the following subsections.

2.3.1.1. get_manager_types
Manager TypelLi st get _manager _types()
rai ses (UCQO : ProcessingFault, UCO : SystenfFault);

This selector operation allows aclient to discover which Managers are supported by aparticular GIAS
library. A Manager TypeList structure is returned from a successful invocation of this operation. The
Manager TypeL.ist returned by this operation will contain the names of all Manager types supported by this
implementation. The Manager names contained in thislist are used with the get_manager_types operations
defined below to specify the type of Manager desired.

2.3.1.2. get_manager (j/NPS)
Li braryManager get _nmanager
(i n Manager Type manager _type,

in AccessCriteria
access criteria)

rai ses (UCGO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This operation is a Request to be given access to a Manager object. The client supplies the type of
Manager desired in manager_type and supplies information used for access control inaccess_criteria. (See
the get_manager_types operations for details on determining acceptable values). A successful invocation
will return areference to an object of type LibraryManager. This reference should then be narrowed (cast)
into areference to an object of the specific Manager type requested in manager_type. It can be assumed
that all Manager types supported by a GIAS implementation are derived (inherited) from type
LibraryManager. The client must know the correlation between the names given in the Manager TypeL.ist
and the object type to which that corresponds. Subsequent callstoget_manager by the same client will
result in the return of the same instance of a Manager or a new instance that has exactly the same state as
thefirst instance (i.e., the state of the Manager is persistent).. Also callstoget_manager by different clients
will alwaysresult in different instances of Managers being returned. That is, the library system will not force
clientsto share an instance of aManager.

The standard exception identifier UnknownManager Type is returned by this operation if the client has
supplied avalue of manager_type unknown or unsupported by thisimplementation. Supplying an unknown
criteriainaccess_criteria will result in the BadAccessCriteria standard exception identifier. Supplying an
unacceptable value for an OPTIONAL attributeinaccess criteria will result in the BadAccessValue
standard exception identifier. Supplying incorrect or unacceptable values for one or more MANDATORY
attributes in access_criteria will result in the NO_PERMISSION system exception being returned. (See
Appendix E for alist of other system exceptions)

UNCLASSIFHED

33

NO0101-G UNCLASSIFED 6 August 2001

2.3.1.3. get_library_description

Li braryDescription get _|ibrary _description()

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenfFaul t);

This selector operation returns some descriptive information about the Library. A successful invocation of
this operation will return a populated LibraryDescription structure.

2.3.1.4. get_other_libraries
Li braryDescri ptionLi st get_other _|ibraries
(in AccessCriteria access_criteria)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This selector operation returns some descriptive information about other Libraries known to this Library that
are accessible to the requesting user. access criteria holds any identifying or access control information
needed. A successful invocation of this operation will return an unbounded list of Library descriptions.

2.3.2. LibraryManager
interface LibraryManager
{
UCGO: : NaneLi st get _property_nanes ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
PropertylLi st get property val ues
(in UCO : NanmeLi st desired_properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCO. : SystenfFaul t);

UNCLASSIFHED

34

NO0101-G UNCLASSIFED 6 August 2001

Li braryLi st get _libraries ()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

H

The LibraryManager interface serves as the (abstract) root for all types of Manager objectsin the GIAS
definition. It is abstract in the sense that a concrete LibraryManager object by itself would serve no real
purpose. Itsreal purposeisto define certain operations that are common to all types of Manager objectsin
GIAS. Because these operations are common to all Manager types, aclient can use these common
operations to interact with Managers of unfamiliar type.

The operations defined in the LibraryManager interface are described in the following subsections.
2.3.2.1. get_property_values
PropertylLi st get property val ues

(in UCO : NaneLi st desired_properties)

rai ses (UCGO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This operation allows aclient to discover the properties and the current values of those properties that
describe aManager. A client supplies the names of the properties of interest in the NameList
desired_properties. A successful invocation of this operation returns a PropertyList, which contains the
current values of the requested properties. The PropertyList will contain one NameValue pair for each
element supplied in the NameL.ist desired_properties. The name in that NameVal ue pair will be the name as
specified indesired properties. The value associated with that name will be the current value of that
property. The specific set of properties supported by a Manager is defined in the appropriate GIAS profile.

The standard exception identifier UnknownProperty will be returned if the client has supplied one or more
properties unknown or unsupported by this Manager..

2.3.2.2. get_libraries
Li braryLi st get libraries ()

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

UNCLASSIFHED

35

NO0101-G UNCLASSIFED 6 August 2001

This selector operation allows aclient to determine which GIAS-based Library system(s) this Manager
supports. A successful invocation of this operation will return aLibraryList structure. This structure will
contain an object reference of type Library for each Library this Manager supports. There will always be at
least one Library object referencein thislist.

2.3.2.3. get_property_names
UCO. : NaneLi st get _property_nanmes ()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This selector operation allows aclient to obtain alist of property names. A property nameisthe name
component of aNameValue pair. The NameList returned by this selector operation identifies all the property
names supported or known by this Manager.

2.3.3. RequestM anager (j/NPS)
i nterface Request Manager:
{
Request Li st get active_requests ()

rai ses (UCO : ProcessingFault, UCO : SystemfFaul t);

void set _default _timeout (in unsigned |ong
new_def aul t)

raises (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

unsi gned | ong get _default _tineout ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

void set tinmeout (in Request aRequest,

in unsigned | ong new |ifetine)

UNCLASSIFHED

36

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

unsi gned | ong get timeout (in Request aRequest)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

voi d del ete_request (in Request aRequest)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

i

The RequestManager interface serves to define operations common to all Managers that use Request
objects as part of their operations. Thisinterfaceis abstract. Also, these common operations allow aclient
to interact with unfamiliar forms of RequestManagers. The operations defined on RequestManager serve to
alow clientsto identify active Requests and control their lifetimes.

Each Request being managed by a RequestManager has alimited lifetime. Thislifetimeis considered to
begin when the processing it represents reaches the COMPLETE state and ends when the timeout set for
that particular Request has elapsed. After a Request’ s lifetime has expired a RequestManager isfreeto (but
isnot required to) delete that Request as well as all resources associated with that Request.

The operations defined in the RequestManager interface are described in the following subsections.

2.3.3.1. get_active requests (j/NPS)

Request Li st get active_requests ()

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenfFaul t);

This operation allows a client to determine what Requests are being managed by thisRequestManager. A
successful invocation of this operation will return a RequestList structure. This structure will contain an
object reference of type Request for each Request currently being managed by thisRequestManager .

2.3.3.2. set_default_timeout

UNCLASSIFHED

37

NO0101-G UNCLASSIFED 6 August 2001

voi d set_default_tinmeout (in unsigned |ong
new_def aul t)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This operation allows aclient to set adefault value (in seconds) of the lifetime of the Requests being
managed by this RequestManager. The client supplies the desired lifetime innew_default. Following
successful invocation of this operation, all new Requests managed by this RequestManager will have a
lifetime of new_default seconds. This operation has no effect on the lifetime of Requests that already exist
at the time of invocation of this operation.

The standard exception identifier ImplementationLimit will be returned if the client attemptsto set a default
lifetime that exceeds the maximum lifetime supported by thisRequestManager implementation. The value of
this maximum isimplementation dependent and may vary over time.

2.3.3.3. get_default_timeout

unsi gned | ong get _default_timeout ()

rai ses (UCO : Processi ngFault,
UCO. : SystenFaul t);

This operation allows a client to determine the current default lifetime for Requestsinitiated by this
RequestManager. Successful invocation of this operation will return the current default lifetime of Requests
in seconds.

2.3.3.4. set_timeout
void set _tinmeout (in Request aRequest,
in unsigned | ong new |lifetine)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows a client to modify the currently set value for the lifetime of a Request. The client
supplies the Request that is to have its lifetime modified in aRequest and the desired value of its new lifetime
in new_lifetime. Following successful invocation of this operation, the lifetime of Request aRequest will be

UNCLASSIFHED

38

NO0101-G UNCLASSIFED 6 August 2001

new_lifetime seconds. If the Request aRequest has not reached a COMPLETE state, the lifetime will be
new_lifetime seconds beginning from the time it reaches the COMPLETE state. If Request aRequest is
aready inthe COMPLETE state when this operation isinvoked (that is aportion of its lifetime has already
elapsed), the lifetime of Request aRequest will be new_lifetime seconds beginning from the time the
set_timeout operation successfully compl etes.

The standard exception identifier UnknownRequest will be returned if the client has supplied a Request
unknown to thisinstance of RequestManager. The standard exception identifier |mplementationLimit will
bereturned if the client attemptsto set adefault lifetime that exceeds the maximum lifetime supported by this
RequestManager implementation. The value of this maximum isimplementation dependent and may vary
over time.

2.3.3.5. delete request (j/NPS)

voi d del ete_request (in Request aRequest)

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows a client to destroy a Request and free all resources associated with that Request. A
client supplies the Request to be destroyed in aRequest. Following successful invocation of this operation,
the RequestManager is free to (but is not required to) immediately destroy Request aRequest and to free all
resources associated with that Request.

The standard exception identifier UnknownRequest will be returned if the client has supplied a Request
unknown to thisinstance of RequestManager. After the RequestManager has destroyed the Request,
attempts to invoke operations on that Request will return the OBJECT_NOT_EXI ST system exception.

2.3.3.6. get_timeout
unsi gned | ong get _tinmeout (in Request aRequest)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

The selector operation get_timeout provides the client with the amount of time that remains on Request
aRequest before the RequestM anager del etes the Request.

2.3.4. AccessM anager
i nterface AccessManager: Request Manager
UNCLASSIFIED

39

NO0101-G UNCLASSIFED 6 August 2001

{

UseModelLi st get use_npdes ()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

bool ean is_available (in U D::Product product,
in UseMbde use_ node)

rai ses (UCO :Invalidlnput Paraneter,
UCQO: : Processi ngFaul t, UCQO. : SystenfFaul t);

/'l Returns the time (in seconds) estimated to put the
/'l requested product into the requested UseMode.

/1 DOES NOT request a change in the availabilty of
t he product.

unsigned |long query_avail ability_del ay
(in U D::Product product,

in Avail abilityRequirenent
avai lability_requirenment,

i n UseMode use_node)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

short get_nunber _of priorities()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

Set Avai | abi lityRequest set _availability

(in U D::ProductlList products,

UNCLASSIFHED

40

NO0101-G UNCLASSIFED 6 August 2001

in Avail abilityRequirenent
avai lability_requirenment,

in UseMbde use_ node,
in short priority)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);
1

The AccessManager is an abstract interface that servesto define operations common to Managers that
alow clientsto determine and control the “availability” of adata set or product. “availability” is defined as
the readiness of a data set or product to be used by the other operations on the Manager. An
AccessManager describes “availahility” by defining one or more UseModes. A UseMode is a state or
condition of adata set or product that indicates its readiness to be used by the AccessManager for a
specific purpose.

The operations defined in the AccessManager are described in the following subsections.

2.3.4.1. get_use_modes

UseModelLi st get use_nodes ()

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

This operation dlows aclient to discover the UseModes supported by this AccessManager .
A successful invocation of this operation returns a UseModeL.ist containing dl of the
UseModes supported or known to this AccessManager.

2.3.4.2.is available

bool ean is_available (in U D::Product product, in
UseMode use_node)

raises (UCG :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

UNCLASSIFHED

41

NO0101-G UNCLASSIFED 6 August 2001

This operation allows a client to determine whether adata set or product is ready for a specific purpose. A
client indicates the data set or product of interest and its desired use by supplying both areference of type
Product in product and itsintended use as aUseMode in use_mode. A successful invocation of this
operation will return aboolean that indicates whether or not the requested data set or product is currently
available for the requested use. A boolean value of “TRUE” indicates the product is available. A boolean
value of FAL SE indicates that the product is not currently available for the requested use. This operation
does not affect the current availability of the requested data set or product.

The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to this AccessManager. The standard exception identifier UnknownUseMode will be
returned if the client supplied a UseMode unknown or unsupported by this AccessManager. The standard
exception identifier BadUseMode isreturned if the client supplied a UseMode that is inappropriate or
unsupported for the particular data set or product supplied in product.

2.3.4.3. get_number_of priorities
short get_nunber _of priorities()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This operation returns the number of priority levelsthis OrderMgr recognizes. Priorities are ordered from 1
(one) to N, where 1 isthe highest priority and N the lowest. This operation returnsthe N for this
AccessManger.

2.3.4.4. set_availability
Set Avai | abi l i tyRequest set_availability
(in U D::ProductlList products,

in Avail abilityRequirenent
avai lability_requirenment,

in UseMbde use_ node,
in short priority)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows a client to submit a Request to make one or more products available for a specific
purpose or to indicate that the products are no longer needed for the specific purpose. A client indicates
data sets or products of interest and their desired use by supplying both alist of references of type Product

UNCLASSIFHED

42

NO0101-G UNCLASSIFED 6 August 2001

inthe productList productsand itsintended use as a UseMode in use_mode. Theclient also includes a
parameter of type AvailabilityRequirement. If that parameter holds the value REQUIRED it indicates the
client wishes to have the products put into the requested UseMode. If the parameter holds the value
NOT_REQUIRED, it indicates the client no longer needs the productsin that mode and the server isfreeto
remove it from that mode. The client also supplies apriority as a short in the parameter priority.

The standard exception identifier UnknownProduct will be returned if the client supplied one or more
product references unknown to this AccessManager. The standard exception identifier UnknownUseMode
will be returned if the client supplied a UseMode unknown or unsupported by this AccessManager. The
standard exception identifier BadUseMode isreturned if the client supplied a UseMode that isinappropriate
or unsupported for the particular data set or product supplied inproduct.

The BadUseMode standard exception identifier will also occur if the requested data set or product can never
be made available in the requested UseMode.

2.3.4.5. query_availability_delay

unsigned |long query_availability _delay (in
Ul D: : Product product,

in Avail abilityRequirenent
avai lability_requirenment,
in UseMode use_node)

rai ses (UCO : I nvalidl nput Par anet er,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This selector operation allows aclient to get an estimate of the timein seconds for a product to be placed in
the requested mode. Invocation of the operation does NOT submit a Request to actually place the product
in the specified mode, it only returns an estimate of the time required to do so. The parameters and standard
exception identifiers are identical to those of set_availability defined above.

2.3.5. OrderMgr
interface OrderMyr: Li braryManager, AccessManager
{

UCO: : NaneLi st get package _specifications()

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenfFaul t);

UNCLASSIFHED

43

NO0101-G UNCLASSIFED 6 August 2001

Val i dati onResul ts val i date_order
(in OrderContents order,
in PropertyList properties)

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Order Request order (in OrderContents order,
in PropertyLi st properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Hi

The OrderMgr allows aclient to submit orders for data sets or productsfrom aGIAS Library. The OrderMgr
provides an operation to validate an order specification prior to submitting the order to a GIAS Library. Both
operations on this Manager re-use the OrderContents structure to describe an order. The operations defined
in the OrderMgr interface are described in the following subsections.

2.3.5.1. get_package specifications

UCO. : NaneLi st get package_specifications()

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

This operation returns aNameL ist containing all packaging specifications known or acceptable to this
OrderMgr. These packaging specifications are used as values for the element
packaging_format_and_compression in PackagingSpec structures submitted in orders.

2.3.5.2. validate _order
Val i dati onResul ts val i date_order

UNCLASSIFHED

44

NO0101-G UNCLASSIFED 6 August 2001

(in OrderContents order,
I n PropertyLi st properties)

rai ses (UCO :Invalidlnput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

The operation validate _order isinvoked to determineif an order Request for a data set or product from a
GIAS Library isvalid. The operation returns a data structure indicating the validity of the order and
information concerning details specific to the validation of the order.

2.3.5.3. order
Order Request order (in OrderContents order,
in PropertyLi st properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

The operation order is used to request delivery of one or more products (i.e. place an order). The client
defines the order by assembling an OrderContents structure containing all necessary elements of the
desired order.

2.3.6. DataM odelM gr
i nterface Dat aMbdel Myr: Li braryManager

{

UCQO. : AbsTi me get data_nodel _date (in PropertylLi st
properties)

rai ses (UCO : I nvalidl nput Paramet er,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

UCO. : NanmeLi st get _alias_categories(in PropertylLi st
properties)

UNCLASSIFHED

45

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

UCQO. : NameNaneLi st get | ogical _aliases(in string
category, in PropertylList properties)

rai ses(UCGO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

string get_logical _attribute_nanme (in ViewNane
view _name, in Conceptual AttributeType attribute_type,
in PropertylList properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

Vi ewLi st get _view nanes (in PropertylLi st
properties)

rai ses (UCGO :Invalidl nput Paraneter
UCQO: : Processi ngFaul t, UCQO. : SystenfFaul t);

AttributelnformationLi st get_attributes (in ViewNanme
Vi ew_nane,

in PropertylLi st
properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

Attributelnformati onLi st get _queryable_attributes
(in ViewNane vi ew_nane,

in PropertylLi st
properties)

raises (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

UNCLASSIFHED

46

NO0101-G UNCLASSIFED 6 August 2001

UCO : EntityG aph get _entities (in ViewNane view _nane,
I n PropertyLi st properties)

rai ses (UCO :Invalidlnput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

AttributelnformationLi st get_entity_attributes
(in Entity aEntity,
in PropertylLi st properties)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Associ ati onLi st get _associations(in PropertylLi st
properties);

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

unsi gned short get _max_vertices(in PropertylLi st
properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

The DataModelMgr allows a client to discover and access the data model being used by the Library. This
capability allows aclient to be constructed without “hard-coding” a specific datamodel into its design. The
DataModel Mgr interface operations can be partitioned into two sets: access to ancillary data and access to
the data model itself. The ancillary set of selector operations provides the following:

the last date and time the data model was updated (get_data_model_date);

alist of communitiesthat define their own set of aliases data model attribute names
(get_alias_categories);

the aliases defined by a specific community (get_logical_aliases) and

UNCLASSIFHED

47

NO0101-G UNCLASSIFED 6 August 2001

thelogical attribute names that are the equivalent of the Conceptual AttributeType
(get_logical_attribute name)

The datamodel set of selector operations provides the following descriptions and associated interface
operations:

the set of dataviews known by the Library (get_view_names);

the set of attributes that describe a specific dataview (get_attributes);

the subset of attributes of a data view which are queryable (get_queryable_attributes);
the set of entities that compose a specific dataview (get_entities);

the set of attributes for a specific Entity (get_entity _attributes);

the set of associations available for use among views (get_associations) and

the maximum number of vertices supported in ageospatial query (get_max_vertices)

The operations defined for the DataModel Mgr interface are described in the subsections below.

2.3.6.1. get_data_model_date

UCO. : AbsTi me get data_nodel _date (in PropertylLi st
properties)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This selector operation returns the last date the Library’ s data model was updated.

2.3.6.2. get_alias categories

UCO. : NaneLi st get_alias_categories(in PropertylLi st
properties)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This selector operation returns a NameL.ist containing user communities known to this Library. A user
community contained in the NameL.ist is used as a parameter for the selector operationget_logical _aliases.

2.3.6.3. get_logical_aliases

UCO. : NameNaneLi st get | ogical _aliases(in string
category, in PropertyList properties)

UNCLASSIFHED

48

NO0101-G UNCLASSIFED 6 August 2001

rai ses(UCQO: : I nval i dl nput Par anet er,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This selector operation returns a NameNameL.ist, which contains a mapping of a specific community’s
aliases to names based on the logical data model of the Library. The syntax for the attribute names
contained in the NameNameL ist is defined in section 4.4.6. (Attribute Name Syntax Rule)

The standard exception identifier UnknownCategory isreturned if the category requested is unknown or
unsupported by this DataM odelMgr.

2.3.6.4. get_logical_attribute name
string get_logical _attribute_name (in ViewNane
vi ew_name, in Conceptual Attri buteType attri bute_type,
in PropertylList properties)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This selector operation returns the name of the logical attribute that isthe equivalent of the requested
Conceptual AttributeType in the requested view view_name. The syntax for the attribute names contained
inthe string returned isdefined in section 4.4.6. (Attribute Name Syntax Rule)

2.3.6.5. get_view_names
Vi ewLi st get _view nanes (in PropertyList properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This selector operation returns a DAG structure which provides a hierarchy of dataviews supported by the
Library for use by the client. The DAG is composed of a hierarchical set of nodes, where each node contains
astring identifying adata view.

2.3.6.6. get_attributes

Attributelnformati onList get_attributes (in ViewNane
view_nanme,in PropertyList properties)

UNCLASSIFHED

49

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This selector operation returns an Attributel nformationList, which describes the requested dataview. The
AttributelnformationList iscomposed of elements of type Attributel nformation. The

Attributel nformationList contains both queryable and non-queryable attributes. The syntax for the attribute
names contained in the Attributel nformation structure is defined in section 4.4.6. (Attribute Name Syntax
Rule)

The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewName, UnknownProperty or BadPropertyValue.

2.3.6.7. get_queryable attributes
AttributelnformationLi st get_queryable_attributes
(in ViewNane vi ew_nane,

in PropertylLi st
properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This selector operation returns an Attributel nformationList , which describes a specific dataview. The
AttributelnformationList isasequence of elements of type Attributel nformation. The

Attributel nformationList contains the subset of all attributes that are queryable. The syntax for the attribute
names contained in the Attributel nformation structure is defined in section 4.4.6. (Attribute Name Syntax
Rule)

The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

2.3.6.8. get_entities
UCO :EntityGraph get _entities (in ViewName vi ew_nane,
in PropertyList properties)
rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);
UNCLASSIFIED

50

NO0101-G UNCLASSIFED 6 August 2001

This selector operation returns an EntityGraph, which represents a set of entities and their relationships
that compose a specific dataview. Notethat the cardinality is defined within the Edge structure of the
graph.

The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

DAG: Entities

Name of Parent Table (root)

All values are not used but need to be initialized.
Cardinalities will be specified.

One-to-One One-to-Many

Entity Entity

Note: All nodes of type Entity_Node

Figure 2-1 Structure of Data View DAG

2.3.6.9. get_entity attributes
Attributelnformati onLi st get _entity _attributes
(in Entity aEntity,
in PropertyLi st properties)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

UNCLASSIFHED

5l

NO0101-G UNCLASSIFED 6 August 2001

This selector operation returns an Attributel nformationList, which represents a set of attributes that
describes a specific entity. The Attributel nformationList contains elements of type Attributel nfor mation.
The syntax for the attribute names contained in the Attributel nformation structure is defined in section 4.4.6.
(Attribute Name Syntax Rule)

The standard exception identifiers raised by this operation denote an invocation that submits one or more
parameters that provide an UnknownViewNameUnknownPropertyor BadPropertyValue.

2.3.6.10. get_associations

Associ ationLi st get _associations(in PropertyLi st
properties);

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This selector operation returns alist of Association structures that contains the descriptions of the
associations that are used by the DataM odelMgr.

2.3.6.11. get_max_vertices

unsi gned short get _max_vertices(in PropertylLi st
properties);

rai ses (UCO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This selector operation returns the maximum number of vertices supported in geospatial queries.

2.3.7. StandingQueryMgr

i nterface Standi ngQueryMr: Li braryManager,
Request Manager

{

Event Li st get _event _descriptions()

raises (UCO : ProcessingFault, UCO : SystemfFault);

Subm t St andi ngQuer yRequest subm t _standi ng_query (

UNCLASSIFHED

52

NO0101-G UNCLASSIFED 6 August 2001

in Query aQuery,

in UCO : NameLi st result _attributes,
in SortAttributelList sort_attributes,
in QueryLifeSpan |ifespan,

i n PropertyLi st properties)

rai ses (UCO :Invalidlnput Paraneter,

UCG: : Processi ngFaul t,
UCQO: : Systenfaul t);

The StandingQueryMgr alows aclient to place a query with aLibrary that will monitor the Library for new
products arriving in the Library and notify the requester.

2.3.7.1. get_event_descriptions
Event Li st get _event _descri ptions()

rai ses (UCO: : Processi ngFault,
UCQO. : SystenfFaul t);

This selector operation returns alist of events that can be used by the client in the lifespan parameter of
submit_standing_query to set the details of the lifetime of a standing query such as start, duration, and end.

2.3.7.2. submit_standing_query

Subm t St andi ngQuer yRequest subm t _standi ng_query (

in Query aQuery,
UNCLASSIFIED

53

NO0101-G UNCLASSIFED 6 August 2001

in UCO : NanmeList result_attributes,
in SortAttributeList sort_attributes,
in QueryLifeSpan |ifespan,

in PropertyLi st properties)

rai ses (UCG :Invalidl nputParaneter,
UCQ:. : Processi ngFaul t
UCG : SystenfFaul t);

This operation allows aclient to establish a standing query, that is, aquery that is run repeatedly for a set
period of time rather than simply once. The parameters, semantics and standard exception identifiers for this
operation are the same as for asingle query. (see the submit_query operation of the CatalogMagr). In
addition to those parameters, the client specifies the period of time the query isto be runin the parameter
lifespan. The standard exception identifier InvalidEvent is returned if an event contained inlifespan is
inappropriate or unknown. The standard exception identifier ImplementationLimit isreturned if a submitted
value in the QueryL ifeSpan parameter exceeds this Manager’ s capabilities. These limits are implementation
specific.

2.3.8. CreationMgr (j/NPS)
interface CreationMr:LibraryManager, Request Manager
{

Creat eRequest create (in UCGO : FileLocationLi st
new_product, in RelatedFilelList related files,in
UCQO: : DAG creati on_net adat a,

in PropertyLi st properties)

rai ses (UCGO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Cr eat eMet aDat aRequest create_netadata (in UCGO : DAG
creation_netadata, in ViewNanme view _nanme, in

Rel atedFil eList related files, in PropertylLi st
properties)

UNCLASSIFHED

54

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Creat eAssoci ati onRequest create_association(in string
assoc_nane,

in U D::Product view a object,

in U D::ProductlList view_b_objects,

i n UCO : NanmeVal uelLi st assoc_i nfo)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

The CreationMgr interface allows a client to nominate a data set or product to a Library(s) for inclusionin
the Library holdings. Thisinterface also allows a client to nominate the metadata of a data set or product for
inclusion without supplying the data set or product itself. The operations defined in the CreationMgr
interface are described in the following subsections.

2.3.8.1. create (j/NPS)

Creat eRequest create (in UCGO : FilelLocationLi st
new_product, in RelatedFilelList related files, in
UCO. : DAG creation_netadata, in PropertylLi st
properties)

raises (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows a client to nominate a data set or product for inclusion in the holdings of a Library(s).
The data set or product nominated must be accompanied by the appropriate metadata. The client nominates
adata set or product by supplying a FileL ocationList new_product that points to the data set or product
being nominated. The client also indicates any related files that accompany this product by specifying them

UNCLASSIFHED

55

NO0101-G UNCLASSIFED 6 August 2001

in the parameter related files. The metadata that must accompany this nomination may be supplied in one
of two ways: 1) thefile at the locationnew_product contains the data set and all the appropriate metadata 2)
thefile at location new_product contains the data set and some (to include none) of the metadata and
creation_metadata contains the remainder of the appropriate metadata. If the first method of metadata
submission ischosen aNULL valueis supplied for creation_metadata. All metadata for the nominated
product isthen expected to bein file at locationnew_product. If anon-NULL valueis supplied for
creation_metadata this indicates that the second metadata submission method has been chosen and that the
metadata for the nominated product isto be found in the file at location new_product andin the DAG
creation_metadata. If the same metadata element appears in both the file and in the DAG, the value
appearing in the DAG takes precedence and will be used for the nomination. Note that it isimplementation
dependent whether the server “edits” products submitted with conflicting metadatai.e a server may choose
NOT to edit these products and thus serve out productswith metadata that doesn’t match the metadatain
the catalog. The definition of the metadata elements (their names and acceptabl e val ues or ranges, whether
mandatory or optional and their mapping into and out of various file formats that may be nominated) to be
described in thefile or in the DAG are defined in the appropriate GIAS profile. The client also describes any
properties that further refine, effect or amplifies this Request by supplying their names and valuesin the
PropertyL.ist properties. (The propertiesthat are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return areferenceto a
CreateRequest object.

The standard exception identifier BadLocation will be returned if the client supplies alocation description
whichissyntactically invalid, incomplete or specifies alocation unknown or inaccessible by the
CreationMgr. This doesnot require the CreationMgr to determine the validity of the user_name - password
combination specified inlocation or the avail ability of space at |ocation to return successfully. The
standard exception identifier UnknownCreationAttribute will be returned if the client has supplied a
metadata element in the DAG creation_metadata that is unknown or unsupported by thisCreationMgr.
Note that a server will ignore unknown attributes in anominated file. The standard exception identifier
BadCr eationAttributeVal ue will be returned if the client supplies a metadata element, whether inafileorin
the DAG creation_metadata, with an inappropriate or invalid value.. The standard exception identifier
UnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this CreationMgr. The standard exception identifier BadPropertyValueisreturned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property.

2.3.8.2. create_metadata

Cr eat eMet aDat aRequest create_netadata (in UCO : DAG
creation_netadata, in ViewNane view nane, in

Rel atedFil eList related files, in PropertylList
properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

UNCLASSIFHED

56

NO0101-G UNCLASSIFED 6 August 2001

This operation allows a client to nominate the metadata of a data set or product for inclusion in alibrary(s)
without supplying the data set or product itself. The client nominates the metadata by supplying all
metadata elementsin the DAG creation_metadata. The client also indicates which view this metadata
pertains to by supplying the name of the relevant view inview_name . The client also supplies any related
files by providing a RelatedFileList which contains the file location and the file relationship. (See section
2.2.2.8 for the description of the RelatedFileList) The client also describes any properties that further refine,
effect or amplifies this Request by supplying their names and valuesin the PropertyList properties. (The
propertiesthat are avail able or applicable to this operation are defined in the appropriate GIAS profile.) A
successful invocation of this operation will return areference to a CreateM etaDataRequest object.

The standard exception identifier UnknownCreationAttribute will be returned if the client has supplied a
metadata element in the DAG creation_metadata that is unknown or unsupported by thisCreationMgr. The
standard exception identifier BadCreationAttributeValue will be returned if the client supplies a metadata
element in the DAG creation_metadata with an inappropriate or invalid value. The standard exception
identifier UnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this CreationMgr. The standard exception identifier BadPropertyValueisreturned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property.

2.3.8.3. create_association

Creat eAssoci ati onRequest create_association(in string
assoc_nane,

in U D::Product view a object,

in U D::ProductlList view_b_objects,

i n UCO : NaneVal uelLi st assoc_i nfo)

rai ses (UCO : I nvalidl nput Paraneter,
UCG. : Processi ngFaul t, UCO : SystenfFaul t);

This operation allows aclient to create an association of a specified type between aset of Products that
existinaLibrary. The client identifies the desired association inassoc_name, the Product which hasthis
association in view_a_object and the Product(s) to be associated with the view_a_object in the ProductL ist
view_b_objects and the metadata that describes this association in assoc_info. This method will return a
CreateAssociationRequest reference which can be used to monitor the status of this Request.

The standard exception identifier InvalidCardinality will beraised if the number of Productsin the
ProductList view_b_objects does not match the cardinality of the association assoc_name. The standard
exception identifier UnknownAssociation will be raised if the value of assoc_name is unknown to the
CreationMgr. The standard exception identifier InvalidObject will be raised if one or more of the Products
identified are inappropriate for the association requested.

UNCLASSIFHED

57

NO0101-G UNCLASSIFED 6 August 2001

2.3.9. UpdateM gr
i nterface UpdateMr: LibraryManager, Request Manager

{

void set | ock(in U D::Product | ockedProduct)

rai ses (
UCGO: : I nval i dl nput Par anet er, UCQO:. : Processi ngFaul t,
UCQO: : Systenfaul t);

Updat eRequest update (in ViewNanme view, in
UCQO:. : Updat eDAGLI st changes, in Rel atedFil eLi st
relfiles, in PropertyList properties)

rai ses(UCQO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Updat eByQuer yRequest update_by query(in UCO : NanmeVal ue
updat ed_attri bute,

in Query bgs_query,

in PropertylLi st
properties)

rai ses(UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

void rel ease | ock(in U D::Product |ockedProduct)

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

voi d del ete_product(in U D::Product prod)
rai ses(UCO: : I nvali dl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);
3
UNCLASSIFIED

58

NO0101-G UNCLASSIFED 6 August 2001

The UpdateMgr provides the capability for aclient to modify existing catalog entries.

2.3.9.1. set_lock
void set | ock(in U D::Product | ockedProduct)

rai ses(UCO: : I nvali dl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This operation locks a Product to allow it to be safely updated. The Product reference for the Product to be
locked is provided in the parameter lockedProduct. Attemptsto lock aProduct whichisalready locked will
generate a LockUnavailable standard exception identifier.

2.3.9.2. update

Updat eRequest update (in ViewNane view, in
UCQO : Updat eDAGLI st changes, in Rel atedFil eLi st
relfiles, in PropertyList properties)

rai ses(UCQO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This operation allows aclient to modify existing catalog entries. The entriesto be modified arefirst retrieved
viathe ProductMgr::get_parameters operation. (see section 2.3.11. ProductMgr) The desired modifications
are described by providing the type of view that is being updated along with an UpdateDA GL st that
contains the entries with the modified values. (see the UCOS specification for the design of the
UpdateDAGList) The UpdateDAGList, containing the new entries, is provided in the parameter changes.
The client also supplies any updated related files inrelfiles. Note that in the case where related files are
being updated only one catalog entry (Product) can be updated per invocation. The client also describes
any properties that further refine, effect or amplifies this Request by supplying their names and valuesin the
PropertyList properties. (The properties that are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return areferenceto an
UpdateRequest object. A successful invocation of this operation also releases the lock on the updated
catalog entries.

The standard exception identifier NonUpdateabl eAttribute is returned if the client attempts to modify a
non-updateabl e attribute. The standard exception identifier UnsafeUpdate is returned if the client attempts
to update entries that are not locked. The standard exception identifier ProductLocked isreturned if the
client attempts to update entries that are locked by another client.

2.3.9.3 update by query

UNCLASSIFHED

59

NO0101-G UNCLASSIFED 6 August 2001

Updat eByQuer yRequest update_by query(in UCGO : NaneVal ue
updated_attri bute,

in Query bgs_query,

in PropertyLi st properties)

rai ses(UCO : I nvalidl nput Paraneter,
UCO: : Processi ngFaul t, UCO. : SystenFaul t);

This operation allows a client to modify existing catalog entries that match a specific query. The entriesto
be modified are defined as those that match the query defined by the parameter bgs_query. The desired
maodifications are described by providing aname value pair (updated_attribute) that contains the name of
the attribute to be changed and its new value. The client also describes any properties that further refine,
effect or amplifiesthis Request by supplying their names and values in the PropetryList properties. (The
properties that are avail able or applicable to this operation are defined in the appropriate GIAS profile.) A
successful invocation of this operation will return areference to an UpdateByQueryRequest object.

The standard exception identifier NonUpdateabl eAttribute is returned if the client attempts to modify a non-
updateabl e attribute. The standard exception identifier BadUpdateAttributeis returned if the attributein
updated_attribute is unknown. The standard exception identifier LockUnavailable isreturned if theitemsto
be modified cannot be safely locked prior to modification. The standard exception identifier
UnknownViewNameis returned if the data view specified is unknown. The standard exception identifier
BadQuery isreturned if the query specified is malformed. The standard exception identifier
BadQueryAttributeisreturned if one or more of the attributes in the query is unknown. The standard
exception identifier BadQueryValueis returned if one or more of the attributes in the query have an
inappropriate value. The standard exception identifier UnknownProperty isreturned if one or more of the
properties specified in properties is unknown. The standard exception identifier BadPropertyValueis
returned if one or more of the values of properties specified inpropertiesisinappropriate.

2.3.9.4. release _lock
void release_lock(in U D::Product |ockedProduct)

rai ses (UCO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation manually releases alock that has been placed on a Product. The Product reference for the
locked Product is provided in the parameter lockedProduct. Attemptsto release alock on a Product which
isnot locked will be silently ignored.

2.3.9.5. delete product

UNCLASSIFHED

60

NO0101-G UNCLASSIFED 6 August 2001

voi d del ete_product(in U D::Product prod)

rai ses(UCO: : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This operation is used to delete a Product. Attempts to delete a Product which islocked will raise the
ProductL ocked standard exception identifier.

2.3.10. CatalogM gr

i nterface Catal ogMgr: Li braryManager, Request Manager
{

Subm t Quer yRequest subm t_query (
in Query aQuery,
in UCO : NanmeList result _attributes,
in SortAttributeList sort_attributes,
in PropertyLi st properties)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCO. : SystenfFaul t);

Hi t Count Request hit_count (in Query aQuery, in
PropertyLi st properties)

raises (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

s
UNCLASSIFIED

61

NO0101-G UNCLASSIFED 6 August 2001

The CatalogMgr allows aclient to submit queries to search the catalog of holdings of aGIAS Library. The
operations defined in the CatalogMgr interface are described in the following subsections.

2.3.10.1. submit_query

Subm t Quer yRequest submt_query (

in Query aQuery,

in UCO : NaneList result _attributes,
in SortAttributelList sort_attributes,
in PropertylList properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows aclient to submit a query to search a catalog of products (The specific dataviews
available and acceptable to a CatalogMgr are available through the DataM odelMgr.) The query, which
defines the selection criteriafor the products of interest aswell as the view of interest, is defined by the
Query aQuery. The format of this query is defined by the Boolean Query Syntax (BQS) (See chapter 4). The
client indicates the attributes desired in the resultsin the NameL.ist result_attributes. The client also
indicates any desired sorting by including a SortAttribute for each attribute to be sorted in the element
sort_attributes. The format for the attributes used in the query, result attributes and sort attributesisthe
same and are defined by application of arule defined in Chapter 4. The client also describes any properties
that further refine, effect or amplifies this Request by supplying their names and values in the PropertyList
properties. (The properties that are available or applicable to this operation are defined in the appropriate
GIAS profile.) A successful invocation of this operation will return areference to a SubmitQueryRequest
object.

The standard exception identifier UnknownViewName will be returned if the client has supplied a data view
unknown or unsupported by this CatalogMgr. The standard exception identifier BadQuery will be returned
if the Query specified by aQuery is syntactically invalid. The standard exception identifier
BadQueryAttribute will be returned if the query contains an attribute unknown to the CatalogMgr. The
standard exception identifier BadQueryValueisreturned if the client has supplied one or more values for
query attributes which are inappropriate or exceed the allowed or expected values of that attribute. The
standard exception identifier UnknownProperty will be returned if the client has supplied one or more
properties unknown or unsupported by this CatalogMgr. The standard exception identifier
BadPropertyValueisreturned if the client has supplied one or more values for properties which are
inappropriate or exceed the allowed or expected values of that property.

UNCLASSIFHED

62

NO0101-G UNCLASSIFED 6 August 2001

2.3.10.3. hit_count

Hi t Count Request hit_count (in Query aQuery, in
PropertyLi st properties)

rai ses (UCO : I nvalidl nput Paranet er,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This operation allows a client to determine the number of results (“hits”) that would be returned from a
particular query. The operation parameters, properties and exceptions for this operation areidentical in form
and meaning to those of the submit_query operation defined above. A successful invocation of this
operation returns areference to a HitCountRequest object.

2.3.11. ProductMgr

i nterface Product Mgr: Li braryManager, AccessManager

Get Par anet er sRequest get paraneters (in Ul D::Product
pr oduct,

I n UCO : NanelLi st
desi red_paraneters,

in PropertylLi st properties)

rai ses (UCO :Invalidl nputParaneter,
UCQ. : Processi ngFaul t, UCO : SystenfFault);

Rel at edFi | eTypeLi st get _related file_types(in
Ul D: : Product prod)

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

Get Rel at edFi | esRequest get _related files(
in Ul D::ProductList products,
in UCG : Fil eLocation |ocation,
UNCLASSIFIED

63

NO0101-G UNCLASSIFED 6 August 2001

in Rel atedFil eType type,
in PropertyList properties)

rai ses (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

H

The ProductMgr interface provides operations that allow aclient to determine characteristics about a
specific data set or product. The operations defined in the ProductMgr interface are described in the
following subsections.

2.3.11.1. get_parameters
Get Par anet er sRequest get _paraneters
(in U D::Product product,

i n UCO : NanmelLi st
desi red_paraneters,

i n PropertyList properties)

raises (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation allows a client to submit a Request to determine the characteristics of a specific data set or
product. The client supplies areference to the data set of interest in Product product. The client also
indicates which parameters are of interest in the NameListdesired_parameters. The client also describes
any properties that further refine, effect or amplifies this Request by supplying their names and valuesin the
PropertyList properties. (The properties that are available or applicable to this operation are defined in the
appropriate GIAS profile.) A successful invocation of this operation will return areferenceto a
GetParameter sRequest object.

The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to thisProductMgr.The standard exception identifier UnknownProperty will be returned
if the client has supplied one or more properties unknown or unsupported by thisProductMgr. The
standard exception identifier BadPropertyValueis returned if the client has supplied one or more values for
properties, which areinappropriate or exceed the allowed or expected values of that property. The standard

UNCLASSIFHED

64

NO0101-G UNCLASSIFED 6 August 2001

exceptionidentifier LockUnavailable isreturned if the product is already locked or the client is not allowed
to lock this Product.

2.3.11.2. get_related_file_types

Rel at edFi | eTypeLi st get _related file_types(in
Ul D: : Product prod)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation is used to obtain alist of acceptable RelatedFileType values for each Product. These values
are used with the get_related_files operation (see section 2.3.11.3 below). The standard exception identifier
UnknownProduct isreturned if the client supplied a Product which is unknown or unusable by this
ProductMagr.

2.3.11.3. get_related files

CGet Rel at edFi | esRequest get _related fil es(
i n U D::ProductlList products,
in UCGO : Fil eLocation |ocation,
in Rel atedFil eType type,
in PropertylList properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

This selector operation allows aclient to submit a Request for a specified type of related file/dataset for a set
of products. The client supplies areference to the set of data sets of interest in ProductList products. The
location in which the related files are to be placed is described in the parameter location. This FilelLocation
datatypeis populated to describe the path to the directory level. The fieldfile_name of this parameter is|eft
blank (empty string). The client also indicates the type of related file desired in the parameter type. The
acceptable values for this parameter can be determined viathe get_related_file_types operation (see section
2.3.11.2. above) .The client also describes any properties that further refine, effect or amplifies this Request
by supplying their names and valuesin the PropertyList properties. (The properties that are available or
applicableto this operation are defined in the appropriate GIAS profile.) A successful invocation of this
operation will return areference to a GetRel atedFilesRequest object.

The standard exception identifier UnknownProduct will be returned if the client supplied a product
reference unknown to thisProductMgr. The standard exception identifier BadLocation will be returned if

UNCLASSIFHED

65

NO0101-G UNCLASSIFED 6 August 2001

the client supplied alocation that was incomplete or inaccessible. The standard exception identifier
BadFileType will be returned if the client supplied a RelatedFileTypethat is not valid for the Product
requested. The standard exception identifier UnknownProperty will be returned if the client has supplied one
or more properties unknown or unsupported by thisProductMgr. The standard exception identifier
BadPropertyValue is returned if the client has supplied one or more values for properties, which are
inappropriate or exceed the allowed or expected values of that property.

2.3.12. IngestM gr
interface I ngestMr: Li braryManager, Request Manager
{

/'l FileLocation contains a directory

| ngest Request bul k_pul |l (in UCGO : Fil eLocation
| ocation, in PropertyList property |ist)

rai ses(UCGO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

/'l FileLocation contains a directory

| ngest Request bul k_push(in Query aQuery, in
UCO. : Fil eLocation | ocation, in PropertylLi st
property list)

rai ses(UCO: : I nvali dl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

The IngestMgr provides operations that allow a Library to exchange large amounts of metadata with another
library. The exchange takes place by exchanging (pushing or pulling) a set of files containing the metadata
between the Libraries. The format of the files exchanged and the mapping of those file formatsinto and out
of the Library’ simplementation are outside the scope of the GIAS. The details of thisfile format and its
mappings will be detailed in the appropriate GIAS profile. The operations defined in the Request interface
are described in the following subsections.

2.3.12.1. bulk_push
UNCLASSIFIED

66

NO0101-G UNCLASSIFED 6 August 2001

/'l FileLocation contains a directory

| ngest Request bul k_push(in Query aQuery, in
UCO : Fil eLocation | ocation, in PropertylLi st
property list)

rai ses(UCO : I nvalidl nput Paraneter,
UCO: : Processi ngFaul t, UCO. : SystenFaul t);

This operation places a Request to push all metadata concerning a specified dataview. The initiating Library
also suppliesaquery to further refine the desired metadata. Both of these elements are supplied inthein
parametere aQuery. The format of the query is defined by the BQS (see chapter 4). The initiating library
describes any propertiesthat further refine, effect or amplify this Request by supplying their names and
valuesin the PropertyList property_list. (The propertiesthat are available or applicable to this operation are
defined in the appropriate GIAS profile.).

The standard exception identifier UnknownViewName will be returned if the initiating Library has supplied a
data view unknown or unsupported by thislngestMgr. The standard exception identifier BadLocation will
be returned if the client supplies alocation description which is syntactically invalid, incomplete or specifies
alocation unknown or inaccessible by the IngestMgr. This does not require the IngestMgr to determine the
validity of the user_name - password combination specified inlocation or the availability of space at
location to return successfully.The standard exception identifier UnknownProperty will be returned if the
client has supplied one or more properties unknown or unsupported by this IngestMgr. The standard
exception identifier BadPropertyValueisreturned if the client has supplied one or more values for
properties, which areinappropriate or exceed the allowed or expected values of that property.

2.3.12.2. bulk_pull
/'l FileLocation contains a directory

| ngest Request bul k _pull (in UCO : FilelLocation
| ocation, in PropertyList property list)

rai ses(UCO : I nvalidl nput Paraneter,
UCO: : Processi ngFaul t, UCO. : SystenFaul t);

Thisoperation allows aLibrary (theinitiating Library) to notify another Library (the receiving library) that a
block of metadatais availableto beingested. Theinitiating Library also describes any properties that
further refine, effect or amplify this Request by supplying their names and values in the PropertyList
property _list. (The propertiesthat are available or applicable to this operation are defined in the appropriate
GIAS profile.) A successful invocation of this operation will return areference to an IngestRequest object.

UNCLASSIFHED

67

NO0101-G UNCLASSIFED 6 August 2001

The standard exception identifier BadLocation will be returned if the client supplies alocation description
whichissyntactically invalid, incomplete or specifies alocation unknown or inaccessible by the IngestMgr.
This does not require the IngestMgr to determine the validity of the user_name - password combination
specified inlocation or the availability of space at |ocation to return successfully. The standard exception
identifiertUnknownProperty will be returned if the client has supplied one or more properties unknown or
unsupported by this IngestMgr. The standard exception identifier BadPropertyValueisreturned if the
client has supplied one or more values for properties which are inappropriate or exceed the allowed or
expected values of that property

2.3.13. QueryOrderMgr

interface QueryOrder Myr: Li braryManager,
Request Manager

{
Event Li st get _event _descriptions()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

Subm t Quer yOr der Request subm t_query_order (

in Query aQuery,

in QueryLifeSpan |ifespan,
in Order Type o_type,

in QueryOrder Contents order,
in PropertyList properties)

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

The QueryOrderMgr allows a client to place aquery with a Library that will monitor the Library for existing
(immediate orders) or new products arriving in the Library (standing orders) and then automatically deliver
these products to the requestor. The details of the method to submit a standing order (using the operation

UNCLASSIFHED

68

NO0101-G UNCLASSIFED 6 August 2001

submit_query_order) areidentical to submitting a CatalogMgr query. (See either of thisquery operation of
the CatalogMgr Section 2.3.10). In addition, aquery order is defined by two additional parameters: aflag
which defines whether thisis an immediate or standing order and alifespan which is described by including
acompleted QueryL ifeSpan structure (note that for immediate orders, the QueryLifeSpan isignored).

In addition to submitting a query, aclient must submit a QueryOrderContents structure that describes the
details of how the products are to be delivered. The information contained in the QueryOrderContents will be
applied to all products generated by the order. The client invokes the operation submit_query_order, passing
in the query and order and receives a SubmitQueryOrderRequest object to track the order. The client
establishes a QueryOrder in exactly the same way as establishing a StandingQuery, with the addition of a
QueryOrderContents, which defines the delivery details. As hits are generated against the query, the
associated products are delivered as defined in the order. Calling complete on the SubmitQueryOrderRequest
can be used to determine if the order has been completed or the client can ignore the status of the order.

2.3.13.1 get_event_descriptions

Event Li st get _event _descriptions()

rai ses (UCQO : ProcessingFault, UCO : SystenfFault);
get_event_descriptionsreturns alist of eventsthat can be used by the client in the lifespan parameter of
submit_query_order to set the details of the lifetime of aquery such as start, duration, and end.
2.3.13.2 submit_query_order

Subm t Quer yOr der Request submt_query_order (

in Query aQuery,

I n QueryLifeSpan |ifespan,
in Order Type o_type,

in QueryOrder Contents order,
in PropertyLi st properties)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFault, UCO : SystenfFault);

UNCLASSIFHED

69

NO0101-G UNCLASSIFED 6 August 2001

This operation allows aclient to establish asimple query with a Library that will monitor the Library for
existing (“immediate” orders) or new products arriving in the Library (“standing” orders) and then
automatically deliver these productsto the requestor. The basic parameters, semantics, and standard
exception identifiersfor this operation are identical to those for submitting a CatalogMgr query. (Seethe
submit_query operation of the CatalogMgr in Section 2.3.10.) Additional parameters provide specific details
for establishing the lifespan, type, and delivery details of this query order. The parameter OrderType o_type
provides aflag that defines whether thisisan “immediate” or “standing” order. For “immediate” orders, the
query is performed just once on the Library. For “standing” orders, the parameter QueryLifeSpan lifespan
determines the time period that the query isto berun. (Note: For “immediate” orders, the lifespan parameter
isignored.) The parameter QueryOrderContentsorder describes the details of how the requested products
areto be delivered.

The standard exception identifier InvalidEvent isreturned if an event contained in the lifespan parameter is
inappropriate or unknown. The standard exception identifier ImplementationLimit isreturned if a submitted
valuein the order parameter exceeds this Manager’s capabilities. These limits are implementation specific.

2.3.14. VideoM gr

/linterface VideoMgr : LibraryManager, AccessManager
{

[T}

The VideoMgr isintended to provide operations that allow aclient to access a video data set as atemporal
stream aswell as ageospatial data set. The requirements and design of thisinterface and operations are
TBR.

2.3.15. Request (j/NPS)
i nterface Request

{
UCQO. : Request Descri pti on get _request_description ()

raises (UCO : ProcessingFault, UCO : Systenfaul t);

void set _user_info (in string nessage)
UNCLASSIFIED

70

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

UCO. : Status get _status ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

Del ayEsti mat e get _remni ni ng_del ay()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

voi d cancel ()

rai ses (UCO: : Processi ngFaul t,
UCQO. : SystenfFaul t);

Cal | backl D regi ster_cal | back (in CB::Call back
acal | back)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

void free_callback (in CallbacklDid)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

Request Manager get _request _nanager ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

H

The Request interfaceis an abstract interface that defines those operations that are common to Request
objects. Most operations of a RequestManager return areference to a specialized Request object. All
specialized Request objects are derived (inherited) from Request. Thisinterface defines the operationsin the
following subsections.

2.3.15.1. get_request_description (j/NPS)

UNCLASSIFHED

71

NO0101-G UNCLASSIFED 6 August 2001

UCO: : Request Descri ption get request _description()

rai ses (UCO: : Processi ngFault,
UCO. : SystenfFaul t);

This selector operation returns a populated RequestDescription structure that describes the Request.

2.3.15.2. set_user_info
void set _user_info (in string nessage)

rai ses (UCO :Invalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCQO. : SystenfFaul t);

Thismodifier operation allows aclient to provide information that describes the Request. The client supplies
thisinformation, in the form of astring inmessage. A successful invocation of this operation associates the
client’ s message with the Request. This client-supplied information can be accessed in the user_info
element of the RequestDescription structure returned by the get_request_description operation (see
above).

The ImplementationLimit standard exception identifier will be returned if the client supplies a message that
exceeds the maximum length allowed by the implementation. This maximum length isimplementation
dependent.

2.3.15.3. get_status (j/NPS)

UCO. : Status get _status ()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

This selector operation returns the current status of the Request. A successful invocation returns a Status
structure (see the UCO document for details).

2.3.15.4. cancel
voi d cancel ()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

UNCLASSIFHED

72

NO0101-G UNCLASSIFED 6 August 2001

This modifier operation is used to terminate further processing of a Request. After successful invocation of
this operation, all current and future processing associated with thisRequest is terminated.

Bef ore After

COMPLETED COMPLETED

| N_PROGRESS CANCELED

ABORTED ABORTED

CANCELED CANCELED

PENDI NG CANCELED

SUSPENDED CANCELED

RESULTS_AVAI CANCELED

LABLE

2.3.15.5. register _callback (j/NPS)

Cal | backl D regi ster _cal |l back (in CB::Call back
acal | back)

rai ses (UCO :Invalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCO. : SystenfFaul t);

This operation allows aclient to register a Callback object with a Request. The purpose of a Callback object
isto provide amechanism to allow the Request to notify the client that processing of a Request has
transitioned into a state which is specified to trigger a Callback. The states which trigger a Callback are
specific to each concrete Request and are defined in Appendix G. A client can register zero or more
Callback objects with a Request. The client indicates the Callback object to be registered by supplying a
reference to a Callback object in acallback. A successful invocation of this operation returns a Callbackl D
that uniquely identifies that instance of Callback. The details of this CallbacklD are defined in the
appropriate GIAS profile. Note that registering the SAME Callback object twice resultsintwo callbacks
being registered with different Callbackl Ds. Following successful invocation of this operation the Callback
specified will be associated with this Request (registered). When thisRequest reaches a state which triggers
a Callback, the appropriate operation(s) on the specified Callback object will be invoked. (See section 3 for
details of the operations invoked on the Callback object). Note that if a Callback isregistered with a Request
whichisaready in astate that triggers a Callback that Callback will be triggered immediately.

UNCLASSIFHED

73

NO0101-G UNCLASSIFED 6 August 2001

The standard exception identifier UnknownCallBack will be returned if the client supplies areferenceto a
Callback object that is unknown or unreachable by the Request.

2.3.15.6. free_callback (j/INPS)
void free_callback (in CallbacklDid)

rai ses (UCO : I nvalidl nput Paranet er,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This operation allows aclient to remove a Callback previously registered with a Request. The client supplies
areferenceto the Callback that isto be de-registered. Following successful invocation of this operation,
the Callback specified will no longer be registered with thisRequest.

The standard exception identifier UnknownCallBack will be returned if the client supplies areferenceto a
Callback object that is unknown or unreachabl e by the Request. The standard exception identifier
UnregisteredCallBack will be returned if the client attempts to free a Callback, which has not previously
been registered with thisRequest.

2.3.15.7. get_request_manager
Request Manager get request _nmanager ()

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

This operation allows a client to discover which RequestManager is managing the Request. A successful

invocation of this operation returns areference to the RequestManager that is managing thisRequest. This
reference can be narrowed (cast) into a more concrete type.

2.3.15.8. get_remaining_delay
Del ayEsti mate get renmai ni ng_del ay ()

rai ses (UCO: : Processi ngFaul t,
UCQO. : SystenfFaul t);

This operation returns an estimate in seconds (time_delay field of the returned DelayEstimate structure)
until the Request reachesthe COMPLETE (or the RESULTS AVAILABLE stateif applicable to the Request)
state. Thedelay isvalid only if thevalid_time_delay component of the DelayEstimateistrue. If the
valid_time_delay isfalse, thetime_delay should be ignored by the client.

2.3.16. CreateM etaDataReguest

UNCLASSIFHED

74

NO0101-G UNCLASSIFED 6 August 2001

interface CreateMetabDat aRequest: Request
{
UCGO : State conplete (out U D::Product new_product)

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

H

This Request isreturned by the operation create_metadata of the CreationMgr. This Request defines the
following operation:

2.3.16.1. complete
UCO. : State conplete (out Ul D::Product new_product)

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

This operation allows a client to complete processing of the CreateMetaDataRequest. It returns an identifier
in the form of a Product for the newly created Product. It also returns a State indicating details of the
completed operation. See Appendix G for adescription of the state transitions defined for the Request.

2.3.17. SetAvailabilityRequest
interface Set Avail abilityRequest: Request

{
UCGO : State conplete ()

rai ses (UCO : Processi ngFaul t,
UCO: : SystenfFaul t);

s

This Request isreturned by the operation set_availability of the AccessMgr. This Request defines the
following operation:

2.3.17.1. complete

UNCLASSIFHED

75

NO0101-G UNCLASSIFED 6 August 2001

UCO : State conplete ()

rai ses (UCO: : Processi ngFault,
UCO. : SystenfFaul t);

This operation allows a client to complete processing of the SetAvailabilityRequest. This operation blocks
until the requested products are placed in the requested UseMode. It also returns a State indicating details
of the completed operation. See Appendix G for adescription of the state transitions defined for the
Request.

2.3.18. GetRelatedFilesRequest
i nterface CetRel at edFi | esRequest: Request
{
UCO : State conplete (out UCGO : NanmeLi st | ocations)

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenFaul t);

i

This Request is returned by the operation get_related_files of the ProductMgr. This Request defines the
following operation:

2.3.18.1. complete
UCO : State conplete (out UCO : NaneLi st | ocati ons)

rai ses (UCQO : Processi ngFaul t,
UCQO. : SystenfFaul t);

This operation allows a client to complete processing of the GetRel atedFilesRequest. This operation blocks
until the requested related files have been made available. It returns a sequence of names in the parameter
locations, which holdsthe file names of the related files. The namesin this sequence are in the same order
as specified in the ProductList submitted in the get_related files operation. It also returns a State indicating
details of the completed operation. See Appendix G for adescription of the state transitions defined for the
Request.

2.3.19. CreateRequest

UNCLASSIFHED

76

NO0101-G UNCLASSIFED 6 August 2001

i nterface CreateRequest: Request

{

UCO. : State conplete (out Ul D:: ProductlLi st
new_products)

rai ses (UCO : Processi ngFault, UCO : Systenfault);

The CreateRequest is returned by invocations of the create operation of the CreationMgr. This operation
defined in the CreateRequest interface, is described in the following subsection.

2.3.19.1. complete

UCO : State conplete (out Ul D::ProductList
new_pr oducts)

rai ses (UCO : ProcessingFault, UCO : Systenfault);

This operation allows a client to complete processing of the CreateRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation returns a
ProductList containing the references to the newly created product or the composite product for multi-part
products. It also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.20. UpdateRequest

i nterface Updat eRequest: Request

{

UNCLASSIFHED

77

NO0101-G UNCLASSIFED 6 August 2001

UCO : State conplete ()

rai ses (UCO : Processi ngFault, UCO : Systenfault);

H

The UpdateRequest is returned by invocations of the UpdateM gr::update operation. It is used to complete
the processing of an update of acatalog entry.

2.3.20.1. complete

UCO. : State conplete ()

rai ses (UCQO : ProcessingFault, UCO : Systenfault);

This operation compl etes the processing of a catal og update operation. It returns the status of the update
operation. See Appendix G for a description of the state transitions defined for the Request.

2.3.21. SubmitQueryRequest
interface Subm t Quer yRequest : Request
{ voi d set _nunmber _of hits (in unsigned |ong hits)

raises (UCG :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO. : SystenfFaul t);

UCO. : State conplete DAG results (out QueryResults
results);

rai ses (UCQO : Processi ngFaul t,
UCQO. : SystenfFaul t);

UCO. : State conplete_stringDAG results (out
UCO : StringDAGLi st results);

rai ses (UCQO : Processi ngFaul t,
UCQO. : SystenfFaul t);

UCO. : State conplete XM._results (out UCGO : XM_.Docunent
results)

UNCLASSIFHED

78

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCQO : Processi ngFault, UCO. : SystenfFaul t)

The SubmitQueryRequest is returned by invocations of the submit_query operation of the CatalogMgr. It
provides operations to retrieve the results of the submitted query in three forms: asaDAG, asa StringDAG
or asa XML Document. Thisinterface defines the following operations:

2.3.21.1. set_ number_of hits
voi d set_nunber_of _hits (in unsigned |ong hits)

rai ses (UCG :Invalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCQO. : SystenfFaul t);

This operation allows aclient to set the number of results (“hits”) that are returned by invocations of the
operation complete (see below). This operation also sets the number of hits accumulated by this
SubmitQueryRequest before a Callback istriggered.

2.3.21.2. complete DAG_results

UCO : State conplete DAG results (out QueryResults
resul ts)

rai ses (UCO : ProcessingFault, UCO : Systenfault);

This operation allows a client to compl ete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of _hits has been accumulated or al results have been
processed. A successful invocation of this operation returns a QueryResults structure containing results
from the query. Subsequent invocations of this operation can be used to retrieve any remaining results.
Once a set of results have been returned from this operation they are no longer accessible, that is, thereis
no mechanism to retrieve the same set of results a second time. It isthe client’ s responsibility to hold any
retrieved results. The number of results returned in this structure per invocation is determined by the value
setin an invocation of set_number_of _hits (see above). A retrieval that returns a number of results|ess
than the value previously set by set_number_of hitsindicatesthat all results have been retrieved. If
set_number_of _hits has not been called prior to the invocation of complete, the number of results returned
in the QueryResults structure is determined by a default value, which isimplementation dependent. See
Appendix G for adescription of the state transitions defined for the Request.

2.3.21.3. complete stringDAG_results

UNCLASSIFHED

79

NO0101-G UNCLASSIFED 6 August 2001

UCO : State conplete_stringDAG results (out
UCO. : StringDAGLI st results)

rai ses (UCO : ProcessingFault, UCO : Systenfault);

This operation allows a client to compl ete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of _hits has been accumulated or al results have been
processed. A successful invocation of this operation returns a UCO:: StringDAGLi st structure containing
results from the query. Subsequent invocations of this operation can be used to retrieve any remaining
results. Once a set of results have been returned from this operation they are no longer accessible, that is,
there is no mechanism to retrieve the same set of results asecond time. It isthe client’ s responsibility to
hold any retrieved results. The number of resultsreturned in this structure per invocation is determined by
the value set in aninvocation of set_number_of hits (see above). A retrieval that returns a number of
results less than the value previously set by set_number_of hitsindicates that all results have been
retrieved. If set_number_of _hits has not been called prior to the invocation of complete, the number of
results returned in the StringDAGList structure is determined by adefault value, which isimplementation
dependent. See Appendix G for a description of the state transitions defined for the Request

2.3.21.4. complete XML _results

UCO. : State conplete XM__results (out UCO : XM_.Docunent
results)

rai ses (UCQO : ProcessingFault, UCO : SystenfFault);

This operation allows a client to compl ete processing of the SubmitQueryRequest. The operation blocks
until the number of results set by set_number_of _hits has been accumulated or al results have been
processed. A successful invocation of this operation returns a UCO:: XMLDocument structure containing
results from the query. Subsequent invocations of this operation can be used to retrieve any remaining
results. Once a set of results have been returned from this operation they are no longer accessible, that is,
there is no mechanism to retrieve the same set of results asecond time. It isthe client’ sresponsibility to
hold any retrieved results. The number of results returned in this structure per invocation is determined by
the value set in aninvocation of set_number_of hits (see above). A retrieval that returns a number of
results less than the value previously set by set_number_of hitsindicates that all results have been
retrieved. If set_number_of _hits has not been called prior to the invocation of complete, the number of
results returned in the XML Document structure is determined by a default value, which isimplementation
dependent. See Appendix G for a description of the state transitions defined for the Request.

2.3.22. SubmitStandingQuer yRequest
interface Subm t St andi ngQuer yRequest : Request
{

voi d set _number_of _hits (in unsigned |long hits)

UNCLASSIFHED

80

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

unsi gned |l ong get_nunber_of hits()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

unsi gned |l ong get_nunber_of _hits_in_interval (in
unsigned long interval)

rai ses (UCO : I nvalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

unsi gned |l ong get nunber of interval s()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

void «clear_all()

rai ses (UCO : Processi ngFault,
UCO. : SystenFaul t);

void clear_intervals(in unsigned |ong
num_.i nt erval s)

rai ses (UCO : I nvalidl nput Par aneter,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

void clear_before(in UCO :Tinme relative_tine)

rai ses (UCO :Invalidl nput Paraneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

void pause()

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenfFaul t);

void resunme()

UNCLASSIFHED

81

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

UCGO. : AbsTime get _tinme_| ast_executed()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

UCGO. : AbsTi me get _tinme_next_execution()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UCO : State conplete DAG results (out QueryResults
resul ts)

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UCO : State conplete_stringDAG results (out
UCO : StringDAGLI st results)

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UCO : State conplete XM._results (out
UCO: : XM_Docunent results)

rai ses (UCO : Processi ngFault,
UCO. : SystenFaul t);

The SubmitStandingQueryRequest is returned by invocations of the submit_standing_query operation of
the StandingQueryMar.

2.3.22.1. set_ number_of hits
voi d set _nunmber_of _hits (in unsigned |long hits)

rai ses (UCO :Invalidl nput Paraneter,
UCQO: : Processi ngFaul t, UCQO. : SystenfFaul t);

UNCLASSIFHED

82

NO0101-G UNCLASSIFED 6 August 2001

This operation allows aclient to set the number of results (“hits”) that are returned by invocations of the
operation complete (see below). This operation also sets the number of hits accumulated by thisRequest
before a Callback istriggered.

2.3.22.2. get_number_of hits

unsigned long get_nunber_of hits()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This operation returns the current total number of hits collected by this Request.

2.3.22.3. get_number_of hits in_interval

unsigned long get_nunber_of _hits_ in_interval (in
unsigned long interval)

rai ses (UCGO :Invalidl nputParaneter,
UCQO:. : Processi ngFaul t, UCQO : SystenfFaul t);

This operation returns the number of hitsin the specified interval.

2.3.22.4. get_number_of intervals

unsi gned | ong get _nunber_of interval s()

rai ses (UCO: : Processi ngFaul t,
UCQO. : SystenfFaul t);

This operation returns the number of intervals for which this Request has collected hits.

2.3.22.5. clear_all
void clear_all()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UNCLASSIFHED

83

NO0101-G UNCLASSIFED 6 August 2001

This operation clearsall hits currently held by this Request.

2.3.22.6. clear_intervals
void clear_interval s(in unsigned |ong num.i ntervals)

rai ses (UCO : I nvalidl nput Paranet er,
UCQO: : Processi ngFaul t, UCGO : SystenfFaul t);

This operation clears all hitsin the specified interval.

2.3.22.7. clear _before
void clear_before(in UCO :Tinme relative_tine)

rai ses (UCO :Invalidl nputParaneter,
UCG. : Processi ngFaul t, UCO : SystenfFaul t);

This operation clears all hits collected before the specified time.

2.3.22.8. pause
void pause()
rai ses (UCO : Processi ngFault, UCO : Systenfault);

This operation suspends processing of the Request.

2.3.22.9. resume
void resune()
rai ses (UCO : Processi ngFault, UCO : Systenfault);

This operation resumes processing of a suspended Request.

2.3.22.10 get_time_last_executed and get_time _next_execution
UCO : AbsTinme get tine_| ast_executed()
rai ses (UCQO : ProcessingFault, UCO : Systenfault);

UCO. : AbsTi ne get _time_next _execution()

UNCLASSIFHED

84

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCQO : ProcessingFault, UCO : SystenfFaul t);

These operations allow access to the time of the last performed execution of this standing query and the
time of the next scheduled execution of this standing query.

The standard exception identifier InvalidEvent will beraised if the standing query has not yet been run
(get_time last_executed) or will not run again (get_time_next_execution).

2.3.22.11 complete DAG _results

UCO. : State conplete DAG results (out QueryResults
results)

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reachesa COMPETE or RESULTS AVAILABLE state. A successful
invocation of this operation returns a“results” value which represents a DAGList. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.3.22.12 complete stringDAG_results

UCO : State conplete_stringDAG results (out
UCO : StringDAGLI st results)

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reachesa COMPETE or RESULTS _AVAILABLE state. A successful
invocation of this operation returns a“results’ value which represents a StringDAGL.ist. It also returnsa
State indicating details of the completed operation. See Appendix G for adescription of the state transitions
defined for the Request.

2.3.22.13 complete XML _results

UNCLASSIFHED

85

NO0101-G UNCLASSIFED 6 August 2001

UCO. : State conplete XM__results (out UCO : XM_Docunent
results)

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

This operation allows a client to complete processing of the SubmitStandingQueryRequest. This operation
blocks until the requested operation reachesa COMPLETE or RESULTS AVAILABLE state. A successful
invocation of this operation returnsa“results’” value in the form of an XMLDocument. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.3.23. HitCountRequest

i nterface HitCount Request: Request

{

UCO : State conpl ete (out unsigned | ong
nunber _of hits)

rai ses (UCO: : Processi ngFault,
UCQO. : SystenfFaul t);

Hi

The HitCountRequest is returned by invocations of the hit_count operation of the CatalogMgr. This
operation defined in the HitCountRequest interface is described in the following subsection.

2.3.23.1. complete

UCO. : State conpl ete (out unsigned | ong
nunber _of hits)

UNCLASSIFHED

86

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

This operation allows a client to complete processing of the HitCountRequest. This operation blocks until
the requested operation reachesa COMPETE state. A successful invocation of this operation returns a
value that indicates the total number of results (“hits”) that would be returned if the query was executed. It
also returns a State indi cating details of the completed operation. See Appendix G for adescription of the
state transitions defined for the Request.

2.3.24. GetParameter sRequest
i nterface Get Paranet er sRequest: Request
{
UCO : State conpl ete (out UCO : DAG paraneters)

rai ses (UCO : ProcessingFault,
UCO: : SystenfFaul t);

UCO : State conplete_StringDAG (out UCO : StringDAG
par aneters)

rai ses (UCO : Processi ngFault,
UCO: : SystenfFaul t);

s

The ParametersRequest is returned by invocations of the get_parameters operation of the ProductMgr. This
operation defined in the GetParametersRequest interface is described in the following subsection.

2.3.24.1. complete
UCO : State conpl ete (out UCO : DAG par anet ers)

rai ses (UCQO : Processi ngFaul t,
UCQO. : SystenfFaul t);

This operation allows a client to complete processing of the ParametersRequest. This operation blocks until
the requested operation reaches a COMPLETE state. A successful invocation of this operation returns a

UNCLASSIFHED

87

NO0101-G UNCLASSIFED 6 August 2001

UCO::DAG structure that contains the properties and current values of those properties of the product or
data set requested. It also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.24.2. complete

UCO : State conpl ete_StringDAG (out UCO : Stri ngDAG
par anmet ers)

rai ses (UCQO : Processi ngFaul t,
UCQO: : SystenfFaul t);

The details of this operation are identical to those of the compl ete operation described above except that
this operation returns the results as a String DAG.

2.3.25. IngestRequest
interface | ngest Request: Request
{
UCO : State conplete ()

rai ses (UCO : Processi ngFault,
UCO: : SystenfFaul t);

s

The IngestRequest is returned by invocations of the bulk_pull and bulk_push operations of the IngestMgr.
This operation defined in the IngestRequest interface is described in the following subsection.

2.3.25.1. complete
UCO. : State conplete ()

rai ses (UCO : Processi ngFault,
UCO: : SystenfFaul t);

UNCLASSIFHED

88

NO0101-G UNCLASSIFED 6 August 2001

This operation allows a client to complete processing of the IngestRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation indicates that the
files containing the metadata to be exchanged are available. For the bulk_pull operation thisindicates that
the metadata file has been delivered to the location specified and is ready to be ingested by the pulling
Library. For the bulk_push operation thisindicates that the metadata file has been found by the receiving
Library at the location specified. This operation does NOT indicate that the receiving Library has
successfully ingested the metadatafile. It merely indicates successful transfer of and accessto the metadata
file. See Appendix G for a description of the state transitions defined for the Request.

2.3.26. Order Request
interface Order Request: Request
{
UCO. : State conplete (out DeliveryManifest prods)

rai ses (UCO : ProcessingFault,
UCO: : SystenfFaul t);

s

The OrderRequest is returned by an invocation of the order operation of the OrderMgr. The operation
defined in the OrderRequest interface is described in the following subsection.

2.3.26.1. complete
UCO : State conplete (out DeliveryManifest prods)

rai ses (UCO: : Processi ngFaul t,
UCQO. : SystenFaul t);

This operation allows a client to complete processing of the OrderRequest. This operation blocks until the
requested operation reaches a complete state. A successful invocation of this operation indicates that the
client’sorder isavailable. The parameter prods contains the package and its contents as delivered. This
operation also returns a State indicating details of the completed operation. See Appendix G for a
description of the state transitions defined for the Request.

2.3.27 SubmitQueryOrder Request

UNCLASSIFHED

89

NO0101-G UNCLASSIFED 6 August 2001

interface Subm t Quer yOr der Request : Request
{
void pause()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

void resune()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UCO : State conplete |ist (out DeliveryManifestList
pr ods)

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

UCGO : State conplete (out DeliveryManifest prods)

rai ses (UCO : Processi ngFault,
UCO. : SystenFaul t);

s

This SubmitQueryOrderRequest is returned by the operation submit_query_order of the QueryOrderMgr.
This Request defines the following operations:

2.3.27.1 Pause
void pause()

rai ses (UCO: : Processi ngFaul t,
UCO. : SystenfFaul t);

This operation temporarily suspends the Request.

2.3.27.2 Resume

This operation causes a suspended Request to continue.

UNCLASSIFHED

90

NO0101-G UNCLASSIFED 6 August 2001

void resune()

rai ses (UCO: : Processi ngFault,
UCO. : SystenfFaul t);

2.3.27.3 Complete list

UCO : State conplete_list (out DeliveryManifestList
pr ods)

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This operation blocks until the submit_query_order reachesa COMPLETE state, indicating that the order is
ready. The parameter prods contains the package(s) and their contents as delivered. This
DeliveryManifestList contains the description of all packages which have been delivered from this
QueryOrder Request since the last time the compl ete operation was called, which may include deliveries
from one or more intervals.That is, the contents of the DeliveryManifestList accumulates until the complete
operation isinvoked, at which point the DeliveryManifestList is cleared and begins to accumul ate again.
Thereisone DeliveryManifest in the DeliveryManifestList for each separate package delivered. See
Appendix G for adescription of the state transitions defined for the Request.

2.3.27.4 Complete
UCO : State conplete (out DeliveryManifest prods)

rai ses (UCO: : Processi ngFault,
UCQO. : SystenfFaul t);

This operation blocks until the submit_query_order reachesa COMPLETE state, indicating that the order is
ready. The parameter prods contains the package(s) and their contents as delivered. This DeliveryManifest
contains a concatenated description of all packages which have been delivered from this QueryOrder
Request since the last time the complete operation was called, which may include deliveries from one or
moreintervals. That is, the contents of the DeliveryManifest accumulate until the complete operation is
invoked, at which point the DeliveryManifest contents are cleared and beginsto accumulate again. See
Appendix G for adescription of the state transitions defined for the Request.

2.3.28. CreateAssociationRequest
UNCLASSIFIED

91

NO0101-G UNCLASSIFED 6 August 2001

interface CreateAssoci ati onRequest: Request
{
UCO. : State conplete ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

H

The CreateAssociationRequest is returned by an invocation of the create_association operation of the
CreationMgr. The operation defined in thisinterface is described in the following subsection.

2.3.28.1. complete
UCO. : State conplete ()

rai ses (UCO : Processi ngFaul t,
UCO. : SystenFaul t);

This operation allows a client to complete processing of the CreateAssociationRequest. This operation
blocks until the requested operation reaches a COMLETE state. A successful invocation of this operation
indicates that the client’ s association has been successfully created. It also returns a State indicating details
of the completed operation. See Appendix G for adescription of the state transitions defined for the
Request.

2.3.29. UpdateByQueryRequest
i nterface Updat eByQuer yRequest: Request

{
UCO. : State conplete ()

rai ses (UCO : Processi ngFault,
UCQO: : Systenfaul t);

i

UNCLASSIFHED

92

NO0101-G UNCLASSIFED 6 August 2001

The UpdateByQueryRequest is returned by an invocation of the update_by query operation of the
UpdateMgr. The operation defined in thisinterface is described in the following subsection.

2.3.29.1. complete
UCO. : State conplete ()

rai ses (UCO : Processi ngFaul t,
UCQO: : Systenfaul t);

This operation allows a client to complete processing of the UpdateByQueryRequest. This operation blocks
until the requested processing has been performed or an error condition occurs. A successful invocation of
this operation indicates that the requested updates have been successfully performed. It also returns a State
indicating details of the completed operation. See Appendix G for a description of the state transitions
defined for the Request.

2.4. Exceptions
2.4.1. Exception M odel

The GIAS specification uses the exception model that is defined in Section 2.4 of the UCO Specification.
This section defines a set of identifiers (string constants) that are used to identify the specific exception
conditions of the GIAS interfaces. As such, they would be used in the exception_namefield of the
UCO::exception_details structure. When an exception that uses one of these standard identifiersisreturned,
the boolean standard_exception field of the UCO::exception_details structure should be set to TRUE. The
UCO exception model defines three exceptions (InvalidlnputParameter, ProcessingFault and SystemFault)
which each represent a broad category of possible error conditions. The GIAS-specific error conditions
defined below are grouped into one of these three categories.

2.4.2 Invalidl nputPar ameter Exceptions (j/NPS)

2.4.2.1 BadAccessCriteria (jJ/INPS)

const string BadAccessCriteriaConst =
"BadAccessCriteria";

This exception indicates the client has supplied incomplete, invalid or otherwise unacceptable access
criteria. The exception_details structure will identify the unacceptabl e access criteria submitted.

2.4.2.2 BadAccessValue (j/INPS)
UNCLASSIFIED

93

NO0101-G UNCLASSIFED 6 August 2001

const string BadAccessVal ueConst = “BadAccessVal ue”;

This exception indicates that one or more values supplied for the access criteriawas missing, incorrect or
otherwise unacceptable. The exception_details structure will identify which access criteria element(s)
submitted were unacceptable.

2.4.2.3 BadCreationAttributeValue(j/NPS)

const string BadCreationAttri buteVal ueConst =
“BadCreationAttri buteVal ue”;

This exception indicates the client supplied avalue for one or more creation attributes with an inappropriate
type or invalid value (i.e., exceeded the allowed or expected range). The exception_details structure will
contain an explanation containing the names of all the unacceptable creation attributes.

2.4.2.4 BadGeoRegion

const string BadGeoRegi onConst = “BadCGeoRegi on”;

This exception indicates that a GeoRegion data structure supplied by the client isincomplete or describes a
region that isinappropriate for the processing requested (i.e., region is not contained in the requested
product).

2.4.2.5 BadL ocation (j/NPS)
const string BadLocationConst = “BadLocation”;

This exception indicates the client supplied a FileL ocation structure that is syntactically invalid, incomplete
or specifies alocation unknown or inaccessible by the server.

2.4.2.6 BadPropertyValue (j/INPS)

const string BadPropertyVal ueConst =
“BadPropertyVal ue”;

This exception indicates the client supplied avalue for one or more properties, which are inappropriate or
exceed the allowed or expected values of that property. The exception_details structure will contain an
explanation containing the names of all the unacceptable properties.

UNCLASSIFHED

94

NO0101-G UNCLASSIFED 6 August 2001

2.4.2.7 BadQuery

const string BadQueryConst = “BadQuery”;

This exception indicates that a query submitted by the client has improper syntax. Thiswould include
missing or mismatched delimiters, use of undefined operators or use of an operator inappropriate for an
attribute. See Chapter 4 for a description of the BNF that describes the syntax for queries.

2.4.2.8 BadQueryAttribute

const string BadQueryAttributeConst =
“BadQuer yAttri bute”;

This exception indicates the client supplied one or more attributes unknown or unsupported by the server.
The exception_details structure will contain the unacceptabl e attributes.

2.4.2.9 BadQueryValue
const string BadQueryVal ueConst = “BadQueryVal ue”;

This exception indicates the client supplied one or more values for query attributes, which are inappropriate
or exceed the allowed or expected values for that attribute. The exception_details structure will contain an
explanation containing the names of all the unacceptable attributes.

2.4.2.10 BadTime
const string BadTi neConst = “BadTi ne”;

This exception indicates the client supplied atime value that isincomplete or exceeds the allowed or
expected range of times. The exception_details structure will contain the unacceptable time val ue supplied.

2.4.2.11 BadUseM ode

const string BadUseModeConst = “BadUselMbde”;

This exception indicates the client requested a UseM ode that isinappropriate or unsupported for the
product or conditions requested.

2.4.2.12 ImplementationLimit (j/NPS)

UNCLASSIFHED

95

NO0101-G UNCLASSIFED 6 August 2001

const string | nplenentationLi mtConst =
“lInpl ementationLimt”;

This exception indicates the client requested an operation with a parameter that exceeds an implementation
specific limit for that parameter. The exception_details structure will contain the name of the parameter
exceeded.

2.4.2.13 UnknownCallBack (j/NPS)

const string UnknownCal | BackConst =
“UnknownCal | Back” ;

This exception indicates the client supplied areference to a Callback object that is unknown or unreachable
by the Request.

2.4.2.14 UnknownCr eationAttribute (j/NPS)

const string UnknownCreationAttributeConst =
“UnknownCreati onAttri bute”;

This exception indicates the client supplied a creation attribute that is unknown or unsupported by the
server. The exception_details structure will contain an explanation containing the names of the entire
unknown or unsupported elements.

2.4.2.15 UnknownM anager Type (j/NPS)

const string UnknownManager TypeConst =
“UnknownManager Type”;

This exception indicates the client requested a Manager type, which was unknown or unsupported by this
implementation. The exception_details structure will contain an explanation containing the name of the
unknown or unsupported Manager type.

2.4.2.16 UnknownProduct
const string UnknownProduct Const = “UnknownProduct”;

This exception indicates that the client requested a product reference unknown to the server.

2.4.2.17 UnknownProperty (j/NPS)

const string UnknownPropertyConst =
“UnknownPr operty”;

UNCLASSIFHED

96

NO0101-G UNCLASSIFED 6 August 2001

This exception indicates the client supplied one or more properties unknown or unsupported by the server.
The exception_details structure will contain an explanation containing the names of all the unacceptable
properties supplied.

2.4.2.18 UnknownRequest (j/NPS)
const string UnknownRequest Const = “UnknownRequest”;

This exception indicates the client supplied areference to a Request that is unknown to the server.

2.4.2.19 UnknownUseM ode
const string UnknownUseModeConst = “UnknownUselMode”;

This exception indicates the client supplied a UseM ode unknown or unsupported by the server. The
exception_details structure will contain an explanation containing the name of the unacceptable UseMode
supplied.

2.4.2.20 UnregisteredCallBack (j/NPS)

const string UnregisteredCall backConst =
“Unregi steredCal | back”;

This exception indicates the client attempted an operation that requires aregistered Callback with a
reference to a Callback that has not been previously registered.

2.4.2.21 BadOrder
const string BadOrderConst = “BadOrder”;

This exception indicates that an order placed by aclient to aLibrary isnot valid.

2.4.2.22 UnknownViewName

const string UnknownVi ewNanmeConst =
“UnknownVi ewNane” ;

This exception indicates that a specified view requested by aclient isunknown by the Library.

2.4.2.23 UnknownEntity
const string UnknownEntityConst = “UnknownEntity”;
This exception indicates that a client-requested entity is unknown.
UNCLASSIFIED

97

NO0101-G UNCLASSIFED 6 August 2001

2.4.2.24 NoValuesRequested

const string NoVal uesRequest edConst =
“NoVal uesRequest ed” ;

This exception indicates that aclient did not request any values.

2.4.2.25 UnsupportedConceptual Attribute

const string UnsupportedConceptual Attri buteConst =
“UnsupportedConceptual Attri bute”;

This exception indicates that a conceptual attribute specified in a Request is unsupported.

2.4.2.26 BadResultAttribute

const string BadResultAttri buteConst =
“BadResul t Attribute”;

This exception indicates that a Request specified aresults attribute that is unsupported.

2.4.2.27 BadSortAttribute

const string BadSortAttri buteConst =
“BadSort Attri bute”;

This exception indicates that the sort attribute specified in the Request is unsupported.

2.4.2.28 NonUpdateableAttribute

const string NonUpdat eabl eAttri buteConst =
“NonUpdat eabl eAttri bute”;

This exception indicates an attempt to update an attribute which the client is not allowed to modify.

2.4.2.29 BadFileType
const string BadFil eTypeConst = “BadFil eType”;

This exception indicates the use of a RelatedFileType that is unknown or inappropriate for the context for
which it was used.

2.4.2.30 InvalidCar dinality
UNCLASSIFIED

98

NO0101-G UNCLASSIFED 6 August 2001

const string InvalidCardinalityConst =
“InvalidCardinality”;

This exception indicates the mismatch of the cardinality defined in an association and the number of
products to be associated.

2.4.2.31 UnknownAssociation

const string UnknownAssoci ati onConst =
“UnknownAssoci ati on”;

This exception indicates the use of an association hame that is unknown.

2.4.2.32 InvalidObject
const string InvalidObjectConst = “lInvalidObject”;

This exception indicates the use of aobject that isinappropriate in the attempted context.

2.4.2.33 UnknownCategory

const string UnknownCat egoryConst =
“UnknownCat egory”;

This exception indicates the use of acategory that isinappropriate in the attempted context.

2.4.2.34 InvalidEvent
const string InvalidEvent Const = “lnvali dEvent”;

This exception indicates the use of an event that isinappropriate or unknown.

2.4.2.35 BadUpdateAttribute

const string BadUpdateAttributeConst =
“BadUpdat eAttri bute”;

This exception indicates an attempt to update an attribute that isinappropriate.

2.4.2.36 BadEmailAddress

const string BadEmail Addr essConst =
“BadEmai | Address”;

UNCLASSIFHED

99

NO0101-G UNCLASSIFED 6 August 2001

This exception indicates the client supplied an unusable email address.

2.4.3 ProcessingFault Exceptions (j/NPS)
2.4.3.1 ProductUnavailable

const string ProductUnavail abl eConst =
“Product Unavai | abl e”;

This exception indicates that a product requested by aclient is“currently” unavailable for access

2.4.3.2 ProductL ocked
const string ProductLockedConst = “ProductLocked”;

This exception indicates that an attempt was made to update or delete alocked product.

2.4.3.3 UnsafeUpdate
const string UnsafeUpdat eConst = “Unsaf eUpdate”;

This exception indicates an attempt was made to perform an update without first locking the entry or entries
being modified.

2.4.3.4 LockUnavailable

const string LockUnavail abl eConst =
“LockUnavai |l abl e”;

This exception indicates that the lock requested is not allowed or supported.

2.4.4 SystemFault Exceptions (j/NPS)
2.4.4.1 GeneralSystemFault (j/NPS)

const string General Syst enfaul t Const =
“Ceneral Systenfaul t”;

This exception indicates that a server encountered an internal error possibly unrelated to the Request.

UNCLASSIFHED

100

NO0101-G UNCLASSIFED 6 August 2001

3. Callback (j/NPS)

The module Callback is compiled as aseparate IDL file.

3.1. Callback (j/NPS)
nodul e CB

{

interface Call back

{

void notify (in UCO :State theState,in
UCQO: : Request Descri pti on description)

rai ses (UCO :Invalidl nput Paraneter,
UCG: : Processi ngFaul t, UCO : SystenfFaul t);

voi d rel ease ()

rai ses (UCQO : Processi ngFault, UCO : SystenfFault);

s
1

The Callback interface explicitly provides one of three mechanisms for client-server communication
between Request objects (i.e., call back, polling/asynchronous, or blocking/synchronous). The other
communication mechanisms are implicit. The Callback interfaceis contained in its own module (CB) . It is not
contained within the GIAS module.

3.1.1. notify (j/NPS)

void notify (in UCO :State theState, in
UCO: : Request Descri ption description)

rai ses (UCO : I nvalidl nput Par aneter,
UCO: : Processi ngFault, UCGO : Systenfault);

UNCLASSIFHED

101

NO0101-G UNCLASSIFED 6 August 2001

This operation notifies the Callback that it has been triggered or activated. A Request that has reached a
state which has been defined to trigger a Callback (see Appendix G for the states which trigger Callbacks)
invokes the notify operation on all Callbacks registered with it. A Request will activate a Callback by
invoking this operation and will supply adescription of the triggering Request indescription. It will also
indicate the state which the Request has entered (which triggered the notify) in the parameter theState.

3.1.2. release (j/NPS)

voi d rel ease ()

rai ses (UCO : Processi ngFault, UCO : Systenfault);

This operation isinvoked by the Request to indicate that the Callback will no longer be used (will not be
notified in the future). Thisalows aclient to release any resources associated with this Callback.

UNCLASSIFHED

102

NO0101-G UNCLASSIFED 6 August 2001

4. Boolean Query Syntax

4.1. Overview

The Boolean query syntax (BQS) isakey part of the specification of the GIAS. Theintent of the BQSisto
formally define the syntax for queries made on geospatial catalogs. It is necessary to definethe BQSin the
GIAS specification to “decouple’ the interfaces used for querying from the implementation details of the
catalog. For example, the BQS allows a client to interact with a geospatial catalog in auniform way
regardless of the database or database type underlying the catal og implementation, the native query
language of the database and the physical schema or data model of the database. This approach has the
dual benefit of simplifying the generation of queries by the client while not constraining the catalog
developersin the design choices for the implementation. The catal og implementers must, however, provide
the capability to translate the BQS into whatever query language and physical schemathey have chosen.

4.2. BQS Design

The BQS is based upon the concept of an attribute-operator-value triplet called afactor. Each factor
represents a condition of interest to the client. These factors can be assembled into a complete query by
relating the factors with the Boolean operators “and” and “or”. BQS constructs are case insensitive and
BQS logical operators on strings and expressions are case sensitive.

Theformal definition of the syntax of the BQS, described in Backus-Naur Form (BNF), is detailed below.

4.3. BNF definition

The Backus-Naur Form (BNF) for the Boolean query syntax is show below. Note that the individual BQS
tokensin a BQS statement are separated from each other by a space.

query ::=term{ "or" term}

term::= factor { "and" factor }

factor ::= ["not"] primry

primary ::= (sinple_attribute _name conp_op constant expressior

| (geo_attribute_name geo_op geo_el enent)

| (geo_attribute_nane rel _geo_op nunber
di st _units “of” geo_el enent)

| (text_attribute_name ["
gquoted_string)

not"] "like"

UNCLASSIFHED

103

NO0101-G UNCLASSIFED

6 August 2001

| (attribute_nane “exists”)

| "(" query "))
attribute ::= a nmenber of the set of queryable
attri bute nanes (defined in the appropriate G AS
profile)
attribute_name ::= attribute | {entity
“:"}entity.attribute
sinple_attribute_nane ::= nenber of subset of

attri bute _nanme for which bool ean

are all owed

geo_attri bute_nanme ::= nenber of
attribute_name for which geospati
al | owed

text _attribute_nanme ::= nenber

of subset

operators (conp_op)

subset of
al operators are

of

attribute_name for which string operators are all owed

(“free text search”)

conp_op ::= "=" "

const ant _expression ::= nunber |

date ::
“" mnute

year “/” nmonth */”
“:” second]”’”

year ::=digit digit digit digit

UNCLASSIFHED

104

n <>||

day “[<bl ank>"

n <:|| n >:||

gquoted_string

hour

NO0101-G UNCLASSIFED 6 August 2001

month ::= digit digit

day ::=digit digit

hour ::= digit digit

mnute ::=digit digit

second ::=digit digit [“.” digit {digit}]

geo_op ::= “intersect” | “outside”| “inside”
rel _geo_op ::= “within” | “beyond”
dist_units ::= “feet” | “neters” | “statute mles” |
“nautical mles” | “kilometers”
geo_elenment ::= point | polygon | rectangle | circle
| ellipse | line | polygon_set | 3dpoint
sign ::="“+" -
nunber ::= [sign] n["." [n]]
UNCLASSIFIED

105

NO0101-G UNCLASSIFED 6 August 2001

n ::=dgit { digit }
digit ::= “0" | “1" | “2" | “3" | “4” | “5" | “6" |
“7" 1“8 | "9
quoted_string ::= """ { character } "'" [/ Single
guot es
character ::= “a”|”"b”| [/ Al printable ASCII
characters To use a "'"
(single quote) use "'"'" (two single quotes)
Del =*,” /] Delimter
latitude ::= nunber
| ongi tude ::= nunber
altitude ::= nunber
hem ::=*“N" | “S | “E" | “W
DMS ::=[digit] digit digit “:” digit digit “:”
digit digit “.” digit hem
|atitude DMS ::= DMS
UNCLASSIFIED

106

NO0101-G UNCLASSIFED 6 August 2001

| ongi tude_DMS :: = DMS

latlon ::= latitude Del longitude | latitude_ DVMS Del
| ongi t ude_DMS

coordinate ::= latlon

point :: = “PONT" “(“ coordinate “)”

3dpoint ::= “3DPO NT” “(* coordinate Del altitude
wy

pol ygon ::= “POLYGON" “ (" coordinate Del coordinate

Del coordinate {Del coordinate}“)”

rectangle ::= “RECTANGLE” “(" upper_left Del
| ower _right “)”

upper _left ::= coordinate
| ower _right ::= coordinate
circle ::= “CIRCLE" “(" coordinate Del radius “)”
units ::= “METERS” | “FEET”
UNCLASSIFIED

107

NO0101-G UNCLASSIFED 6 August 2001

radi us ::= nunber units

ellipse ::= “ELLIPSE” “(“ coordinate Del
maj or _axis_len Del mnor_axis_|len Del north_angle “)”

nunber units

maj or _axis_len :

m nor _axis_len ::= nunber units

north_angl e ::= nunber

line ::= “LINE" “(" coordinate Del coordinate { Del
coordi nate} “)”

pol ygon_set ::= “POLYGON_SET” “(“ polygon { Del
pol ygon} “)”

4.4. Rules and Constraints

The BNF rules are augmented by the following rules and constraints:

4.4.1. Operator Precedence

The order of precedence for the operators defined in the BQS, from high (evaluated first) to low (evaluated
last) is:

() - parentheses — highest precedence

comp_op, geo_op, rel_geo op, “like”, “not like”, exists

not

and

UNCLASSIFHED

108

NO0101-G UNCLASSIFED 6 August 2001

or —lowest precedence

Operators of equal precedence are evaluated from left to right within an expression.

4.4.2. Units

The units applicableto the attributesin a BQS query are those specified by the server implementation. This
information is available via the Attributel nfformation structure for each attribute. The Attributelnformation
structures are accessed through the DataM odelMgr.

4.4.3. Strings and Wildcards

Wildcard expressions are allowed using the character "%" to denote a match with 0 or more characters and
the character “?’ to match with exactly one character. For example the query:

name like 'rob%’

would match the following strings:
'rob’ 'robert’ ‘robin’
where the query
name like 'mik?
would match the following strings
'mike 'miki’ 'miko

The"like" and "not like" operators are the only operators used for text expressions and the only operators
supporting wildcards.

Wildcards can be used to implement the effect of many characters matching operations, such as: contains,
begins with, ends with, not contains, not begins with, not ends with, and so forth.

For example:
attribute like '%contains_this%'
attribute like 'begins_with_this%'
attribute like '%ends_with_this
attribute not like '%will_not_contain_this%'
attribute not like 'will_not_begin_with_this%'

attribute not like '%will_not_end_with_this

4.4.4. BQS and UCOS/GIAS Types

To abet developersimplementing BQS query parsers, the following tables (See Table 4-1 and Table 4-2)
provide a mapping between the above BNF and UCOS data structures.

UNCLASSIFHED

109

NO0101-G UNCLASSIFED 6 August 2001

UNCLASSIFHED

110

NO0101-G

UNCLASSIFED

6 August 2001

Table4-1M apping_] between BQS BNF and UCOS Data Structures

BOS

UCOS

Point

Coordinate2d

Coordinate

Latlon

Latitude

X

Longitude

y

3dpoint

Coordinate3d

Coordinate

Latlon

Latitude

Longitude

Altitude

Polygon (collection of lines)

Polygon (collection of Coordinate2d)

Coordinate

Latlon

Latitude

X

Longitude

y

Rectangle

Rectangle

Coordinate2d

upper_left

upper_left

Coordinate

Latlon

Coordinate2d

Latitude

X

Longitude

y

Lower_right

lower_right

Coordinate

Latlon

Latitude

Longitude

UNCLASSIFHED

111

NO0101-G

UNCLASSIFED

6 August 2001

Table 4-2 Mapping between BQS BNF and UCOS Data Structures

BQS UCOS
Circle Circle
centerpoint
Coordinate
Latlon
L atitude X
Longitude y
Radius radius
Number dimension
units
Reference_system
Ellipse Coordinate3d
centerpoint
Coordinate
Latlon
L atitude X
Longitude y

Minor_axis len

minor_axis_len

Number

dimension

units

Reference_system

Major_axis_len

major_axis_len

Number dimension
units
Reference_system
north_angle north_angle
Number float
Line LineString2d
Coordinate
Latlon
L atitude X
Longitude y

UNCLASSIFHED

112

NO0101-G UNCLASSIFED 6 August 2001

Coordinate
Latlon
Latitude X
Longitude y
polygoniset (collection of polygon’s) PolygonSet (collection of Polygon’s)

Also note that attributes of type Boolean should be described as a constant_expression in its quoted string
formi.e.

atribute="TRUE'

4.4.5. Deriving attribute names from data model

The GIAS query services (CatalogMgr, StandingQueryMgr and QueryOrderMgr services) require the
identification of attributes both as elements of queries and as elementsto be returned from aquery. The
BQS defined above alows for the specification of the query terms, or selection criteria, using the queryable
attribute names from the data model that underlies the implementation. These attributes are available
through the methods on the DataM odelMgr. However, the BQS does not allow for the specification of
relationship routes. Hence, when there are two or more relationship routes between entities containing
queryable attributes that the user wishesto query, the BQS and queryable attribute list isinsufficient to
resolve the route ambiguity. The preferred solution to the route ambiguity would not require the user to
have knowledge of the potential routes, nor of the underlying data model structure.

The GIAS alows for the identification of a queryable attribute by a unique attribute name and aname that is
familiar to the user (an aias), viathe Data Model Manager services. The current Data Model Manager meta-
model accommodates only one unique attribute name for each queryable attribute. However, asingle user-
selectable attribute is insufficient to identify the route and/or role context. Thereforein order to allow an
attribute to be used in the correct context (i.e. the route) the following syntax rule for the queryable attribute
namesis specified that conveys route/role information. Applying this rule to elements of the underlying
datamodel generates attributes that can be used by the CatalogMgr services without route ambiguity. Note
that thisruleis used for attribute query submittal, result attributes, sort attributes and parameters associated
with ProductMgr::get_parameters operation.

4.4.6. Attribute Name Syntax Rule

The syntax for the form of attribute namesis defined in the appropriate GIAS profile.

UNCLASSIFHED

113

NO0101-G UNCLASSIFED 6 August 2001

Appendix A: GIAS IDL

//***

I
[1* The Geospatial and I nmagery Access Service
I
I
[1* Description: Defines the data types and interfaces needed
[1* to support search, retrieval and access to geospati al
[1* data such as inmages, maps charts and their supporting
I* dat a
I
I
I
[1* Hi story:
I* Dat e Aut hor Comment
22
[1* 15 May 97 D. Lutz Initial release for review
[1* 2 July 97 D. Lutz Rel eased for TEM Revi ew
[1* 11 July 97 D. Lutz Changes based on 2 July TEM
[1* 18 July 97 D. Lutz Rel eased for N MA CCB
[1* 24 Cct 97 D. Lutz Changes based on 7 Oct TEM
[1* 14 Nov 97 D. Lutz Changes based on 4 Nov TEM
[1* 17 Dec 97 D. Lutz Changes based on 9 Dec TEM
[1* 15 Apr 98 J. Bal do changes based on Mar TEM
[1* 7 My 98 D. Lutz Changes based on 1 May TEM
[1* 2 Jul 98 J. Baldo/D. Lutz Changes based
[1* on 22-23 Jun TEM Requests - G AS 3.2
[1* 2 Jul 98 (J. Baldo): Callback nodul e has been renopved
[1* from previous G AS 3.2 specification rel ease
I+ 5 June 1998 and will be included in G AS 3.3
I+ 5 Nov 98 D. Lutz Added first version of
Updat eMgr

UNCLASSIFIED

114

NO0101-G UNCLASSIFED 6 August 2001

I+

[1* 10 Mar 99 J. Bal do Changes based on March 99 TEM
I+

[1* 5 August D. Lutz Mods from 3-4 August U P WG
[1* 18 Februray 2000 D. Lutz New Generic Exception Mde
I+

I+

I+

I+

//***

//***

[1* The USI GS Conmon Obj ect Specification (UCOS) contains
[1* all the basic data types and interfaces compn across
I* Usl GS

//***

#i ncl ude "uco.idl"
#i nclude "cb.idl"
#i nclude "uid.idl"

//***
I*

/1* Modul e G AS

I*

I*

[1* Description: The main nodule for the Geospatial & | magery
/1* Access Service

I*

I*

//***

modul e G AS

UNCLASSIFHED

115

NO0101-G UNCLASSIFED 6 August 2001

/Il Forward references for all interfaces, just for convenience

/[l The Library itself

interface Library;

/1l Abstract classes that hel p define the nanagers
i nterface LibraryManager;
i nterface Request Manager;

i nterface AccessManager;

/1l Specific nmanagers defi ned
interface Order Myr;
interface CreationMr;

i nterface UpdateMr;
i nterface Catal ogWyr;
i nterface Standi ngQueryMr;

i nterface Product Myr;
interface | ngestMr;

nterface QueryOrder Myr;

nt erface Dat avbdel Myr;

11

nterface VideoMr;

/1 The abstract request objects

nterface Request;

/1l Specific requests defined

nterface Order Request;

nterface CreateRequest;

nterface CreateMet aDat aRequest;

nt erface Updat eRequest;

UNCLASSIFHED

116

NO0101-G

nterface

nterface

nterface

nterface

nterface

nterface

nterface

nterface

nterface

nterface

UNCLASSIFED

Subm t Quer yRequest ;

Submi t St andi ngQuer yRequest ;
Set Avai | abi | it yRequest ;

Hi t Count Request ;

CGet Par anet er sRequest ;

| ngest Request ;

Subm t Quer yOr der Request ;
Get Rel at edFi | esRequest ;

Cr eat eAssoci ati onRequest ;

Updat eByQuer yRequest ;

6 August 2001

//***

[1* Dat aTypes re-used from UCCS

//***

typedef UCO : NameVal ueli st PropertylList;

typedef UCO : Rect angl e GeoRegi on;

enum GeoRegi onType {
LI NE_SAMPLE_FULL,
LI NE_SAMPLE_CHI P,

LAT_LON ,
ALL,
NULL_REG ON} ;

//***

[1* G AS specific data types

//***

UNCLASSIFHED

117

NO0101-G UNCLASSIFED

enum Avai | abilityRequirenent
{
REQUI RED, NOT_REQUI RED
b

typedef string UseMode;

typedef sequence <short> RsetlList;

enum Order Type { STANDI NG, | MVEDI ATE};

typedef any Product Spec;

typedef string Product Fornat;

typedef string | mageUni quel dentifier;
typedef string | nageFormat;

typedef string Conpression;

typedef short BitsPerPixel;

typedef string Al gorithm

enum Support Dat aEncodi ng {ASCI |, EBCDI C};

typedef sequence < Product Format > Product FormatLi st;

struct | nmageSpec
{
| mageFor mat i ngf orm
| mageUni quel denti fier; inmageid;
Conpr essi on conp;
Bi t sPer Pi xel bpp;
Al gorithm al go;
Rset Li st rrds;
GeoRegi on sub_secti on;
GeoRegi onType geo_regi on_type;
Suppor t Dat aEncodi ng encodi ng;

UNCLASSIFHED

118

6 August 2001

NO0101-G UNCLASSIFED

b

typedef sequence < |InmageSpec > | mageSpecli st;

struct AlterationSpec

{

Pr oduct For mat pf;

Pr oduct Spec ps;

GeoRegi on sub_secti on;

GeoRegi onType geo_regi on_type;
b

typedef sequence < AlterationSpec > AlterationSpeclList;

struct Packagi ngSpec
{

string package_identifier;

string packagi ng_fornat_and_conpressi on;

b

struct Tail oringSpec {

UCO : NarmeNaneLi st specs;
b

struct Medi aType
{

string nmedi a_type;
unsi gned short quantity;

b

typedef sequence < Medi aType > Medi aTypeli st;

struct Physical Delivery
{

UNCLASSIFHED

119

6 August 2001

NO0101-G UNCLASSIFED 6 August 2001

string address;

b

enum Desti nati onType

{
FTP, EMAIL, PHYSICAL

b

uni on Destination switch (DestinationType)

{

case FTP: UCO : Fil eLocation f_dest;
case EMAIL: UCO : Enmai | Address e_dest;
case PHYSI CAL: Physi cal Del i very h_dest;
b

typedef sequence < Destination > DestinationList;

struct ValidationResults

{

bool ean valid;
bool ean war ni ng;
string details;

b

typedef sequence < ValidationResults > ValidationResultslList;

typedef UCGO : Narme Rel at edFi | eType;
typedef sequence<Rel at edFi |l eType> Rel at edFi | eTypelLi st;

struct Rel atedFile

{
Rel at edFi | eType file_type;

UNCLASSIFHED

120

NO0101-G UNCLASSIFED 6 August 2001

UCO : Fil eLocation | ocati on;
b

typedef sequence <Rel at edFi | e> Rel at edFi | eLi st

enum Conceptual Attri but eType
{
FOOTPRI NT, CLASSI FI CATI ON, OVERVI EW THUMBNAI L, DATASETTYPE,

MODI FI CATI ONDATE, PRODUCTTI TLE, DI RECTACCESS,
DI RECTACCESSPROTOCOL, UNI QUEI DENTI FI ER, DATASI ZE};

typedef string Entity;
typedef string ViewNane;
typedef sequence< Vi ewNane > Vi ewNanelLi st ;
struct View {
Vi ewNane Vi ew_nane;
bool ean orderabl e;

Vi ewNaneLi st sub_vi ews;

b

typedef sequence < View > Viewlist;

enum Donmai nType
{
DATE_VALUE, TEXT_VALUE, | NTEGER_VALUE, FLOATI NG PO NT_VALUE, LI ST,

ORDERED_LI ST, | NTEGER RANGE, FLOATI NG POl NT_RANGE, GEOGRAPHI C,
| NTEGER SET, FLOATI NG PO NT_SET, GEOGRAPHI C_SET, Bl NARY_ DATA,
BOOLEAN_VALUE }:

struct Dat eRange

{
UCGO : AbsTine earliest;

UCGO : AbsTi ne | at est;

UNCLASSIFHED

121

NO0101-G

b

struct | ntegerRange

{

| ong | ower _bound;
| ong upper _bound;

b

struct Fl oati ngPoi nt Range

{

doubl e | ower _bound;

doubl e upper_bound;

b

UNCLASSIFED

6 August 2001

typedef sequence < IntegerRange > | nteger Rangeli st;

typedef sequence < Fl oati ngPoi nt Range > Fl oati ngPoi nt RangelLi st ;

uni on Dormain switch (Domai nType)

{

case DATE_VALUE:

case TEXT_VALUE:

case | NTEGER _VALUE:

case | NTEGER_SET:

case FLOATI NG_PO NT_VALUE:
case FLOATI NG_PO NT_SET:
case LI ST:

case ORDERED LI ST:

case | NTEGER _RANGE:

case FLOATI NG_PO NT_RANGE:
case GEOGRAPHI C:

Dat eRange d;

unsigned long t;

I nt eger Range iv;

I nt eger Rangeli st is;

Fl oat i ngPoi nt Range fv;
Fl oat i ngPoi nt RangelLi st f ps;
UCO: : NanelLi st | ;

UCQO:. : NanelLi st ol ;

I nt eger Range ir;

Fl oat i ngPoi nt Range fr;
UCO : Rect angl e g;

UNCLASSIFHED

122

NO0101-G

case GEOGRAPHI C_SET:
case Bl NARY_DATA:

case BOOLEAN_VALUE:

b

enum Attri buteType
{

TEXT,
| NTEGER,
FLOATI NG_POI NT,
UCOS_COORDI NATE,
UCOS_PCOLYGON,
UCOS_ABS_TI ME,
UCOS_RECTANGLE,
UCOS_SI MPLE_GS_| MAGE,
UCOS_SI MPLE_C_| MAGE,
UCOS_COMPRESSED | MAGE,
UCOS_HEI GHT,
UCOS_ELEVATI ON,
UCOS_DI STANCE,
UCOS_PERCENTAGE
UCOS_RATI O,
UCOS_ANGLE,
UCOS_FI LE_SI ZE,
UCOS_FI LE_LOCATI ON,
UCOS_COUNT,
UCOS_WEI GHT,
UCOS_DATE,
UCOS_LI NESTRI NG,
UCOS_DATA_RATE,
UCOS_BI N_DATA,
BOOLEAN_DATA,
UCOS_DURATI ON

UNCLASSIFED

6 August 2001

UCO : Rect angl eLi st gs;
UCQO: : Bi nDat a bd;

bool ean bv;

UNCLASSIFHED

123

NO0101-G UNCLASSIFED 6 August 2001

b

enum Requi r enent Mode

{
MANDATORY, OPTI ONAL

b

struct Attributelnformation
{
string attribute_nane;
AttributeType attribute_type;
Donmin attribute_domain;
string attribute_units;
string attribute_reference;
Requi r ement Mbde node;
string description;
bool ean sortabl e;
bool ean updat eabl e;
b
typedef sequence < Attributelnformation > AttributelnfornmationList;
struct Association {
string nane;
Vi ewNane vi ew_a;
Vi ewNane vi ew_b;
string description;
UCO : Cardinality card;

Attributel nformationList attribute_info;

b
typedef sequence <Associ ation> Associ ati onLi st;

typedef sequence < Library > LibrarylList;

UNCLASSIFHED

124

NO0101-G UNCLASSIFED 6 August 2001

typedef string Manager Type;
typedef sequence < Manager Type > Manager Typeli st;

typedef sequence < Request > RequestLi st;

typedef sequence < UseMdde > UseModeli st;

struct LibraryDescription
{
string library_nane;
string library_description;
string library_version_nunber;
b

typedef sequence < LibraryDescription > LibraryDescriptionList;

struct Query{
Vi ewNane vi ew;
string bgs_query;
}

typedef UCGO : DAGLIi st QueryResults;

enum NanmedEvent Type

{
START_EVENT,

STOP_EVENT,
FREQUENCY_EVENT
}s

UNCLASSIFHED

125

NO0101-G UNCLASSIFED 6 August 2001

struct Event {
string event_nane;
NanedEvent Type event _type;
string event_description;
b

typedef sequence < Event > EventlLi st;

enum DayEvent { MON, TUE, WED, THU, FRI, SAT, SUN, FIRST_OF MONTH,
END_OF MONTH 1}

struct DayEvent Ti ne
{
DayEvent day_event;
UCO: : Ti e tinme;
b

enum Li f eEvent Type { ABSOLUTE_TI ME, DAY_EVENT_TI ME, NAMED_ EVENT,
RELATI VE_TI ME} ;

uni on LifeEvent switch (LifeEventType)
{
case ABSOLUTE TI ME: UCO : AbsTinme at;
case DAY_EVENT_TI ME: DayEventTi me day_event;
case NAMED EVENT: string ev;
case RELATIVE TIME: UCO :Tinme rt;

b

typedef sequence < LifeEvent > LifeEventList;

struct QuerylLifeSpan {
Li feEvent start;
Li f eEvent stop;

Li f eEvent Li st frequency;

UNCLASSIFHED

126

NO0101-G UNCLASSIFED 6 August 2001

b

enum Pol arity { ASCENDI NG, DESCENDI NG };

struct SortAttribute
{
UCGO: : Nane attribute_nane;

Polarity sort_polarity;

b
typedef sequence < SortAttribute > SortAttributelist;

struct Del ayEstinate {
unsi gned | ong tinme_del ay;
bool ean valid_tinme_del ay;
b
struct ProductDetails {
Medi aTypelLi st nilypes;
UCQO: : NaneLi st benuns;
Al terationSpec aSpec;
Ul D:: Product aProduct;
string info_system nane;
b
typedef sequence <ProductDetail s> Product Detail sLi st;

struct DeliveryDetails {
Desti nation dests;
string receiver;
string shi pnment Mode;
b
typedef sequence < DeliveryDetails > DeliveryDetail sList;

UNCLASSIFHED

127

NO0101-G UNCLASSIFED 6 August 2001

struct OrderContents {
string originator;
Tai | ori ngSpec t Spec;
Packagi ngSpec pSpec;
UCO : AbsTi me needByDat e;
string operatorNote;
short orderPriority;
Product Det ai | sLi st prod_list;
DeliveryDetail sList del _list;

b

struct QueryOrderContents {
string originator;
Tai |l ori ngSpec t Spec;
Packagi ngSpec pSpec;
string operator Note;
short orderPriority;
Al terationSpec aSpec;

DeliveryDetail sList del _list;
b

struct AccessCriteria {
string userlD,
string password,

string |icenseKey;

b

struct PackageEl enent {
Ul D: : Product prod;
UCQO: : NamelLi st files;
b

typedef sequence< PackageEl enent > PackageEl enent Li st

UNCLASSIFHED

128

NO10

1-G UNCLASSIFED

struct DeliveryManifest {
string package_nane;
PackageEl enent Li st el enents;

Hi

t ypedef sequence<Del i veryMani f est >

Del i veryMani f est Li st ;

typedef string Call backl D

6 August 2001

//***

I1*
I1*
I1*

The Exceptions ldentifiers

Note: Three sets of IDL Strings Constants are being used as

the Exceptions for the G AS

//***

I

const
const
const

UCO::InvdidlnputParameter Exceptions
string BadAccessCriteriaConst = “BadAccessCriteria”;
string BadAccessVal ueConst = “BadAccessVal ue”;
string BadCreationAttributeVal ueConst =

“BadCreati onAttri buteVal ue”;

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

string BadEnmi | AddressConst = “BadEnmi | Address”;
string BadGeoRegi onConst = “BadCGeoRegi on”;

string BadLocati onConst = “BadLocation”;

string BadPropertyVal ueConst = “BadPropertyVal ue”;
string BadQueryConst = “BadQuery”;

string BadQueryAttributeConst = “BadQueryAttribute”;
string BadQueryVal ueConst = “BadQueryVal ue”;

string BadTi neConst = “BadTi ne”;

string BadUseModeConst = “BadUseMode”;

string UnknownCal | BackConst = “UnknownCal | Back”;

string UnknownCreationAttributeConst = “UnknownCreati onAttribute”;

string UnknownManager TypeConst = “UnknownManager Type”;
string UnknownPr oduct Const = “UnknownPr oduct”;

string UnknownPropertyConst = “UnknownProperty”;
string UnknownRequest Const = “UnknownRequest”;

string UnregisteredCall backConst = “UnregisteredCal |l back”;

string UnknownUseModeConst = “UnknownUseMode”;
string BadOrder Const = “BadOrder”;

string UnknownVi ewNaneConst = “UnknownVi ewNane”;
string UnknownEntityConst = “UnknownEntity”;

UNCLASSIFHED

129

NO0101-G UNCLASSIFED 6 August 2001

const string UnsupportedConceptual AttributeConst =

“Unsupport edConceptual Attri bute”;

const string NoVal uesRequest edConst = “NoVal uesRequest ed”;
const string BadSortAttributeConst = “BadSortAttribute”;

const string NonUpdateabl eAttri buteConst = “NonUpdat eabl eAttri bute”;
const string BadFil eTypeConst = “BadFil eType”;

const string InvalidCardinalityConst = “lnvalidCardinality”;
const string UnknownAssoci ati onConst = “UnknownAssoci ati on”;
const string InvalidObjectConst = “InvalidObject”;

const string UnknownCat egoryConst = “UnknownCat egory”;

const string |InvalidEvent Const = “lnvali dEvent”;

const string BadResultAttributeConst = “BadResul tAttribute”;
const string BadUpdat eAttributeConst = “BadUpdateAttribute”;
const string InplenentationLimtConst = “InplenmentationLinmt”;

I UCQO::ProcessingFault Exceptions

const string ProductUnavail abl eConst = “Product Unavai |l abl e”;
const string LockUnavail abl eConst = “LockUnavail abl e”;

const string UnsafeUpdat eConst = “UnsafeUpdate”;

const string ProductlLockedConst = “Product Locked”;

I UCQO::SystemFault Exceptions
const string General Systenfaul t Const = “General Systenfaul t”;

//***

I1* The Interfaces

//***

//***

/¥ interface G AS:: Library.
11+
/¥ Description: This object represents a Library. It
[]* provi des operations to discover and acquire manager objects,
/¥ whi ch provide access to all the functionality of this
/¥ Li brary.
11+
UNCLASSIFIED

130

NO0101-G UNCLASSIFED 6 August 2001

//***

interface Library

{

Manager TypelLi st get _nmmnager _types ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

Li braryManager get _nmnager (in Manager Type nmnager _type,
in AccessCriteria access_criteria)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

Li braryDescription get _|ibrary_description ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

Li braryDescri ptionList get _other _libraries (in AccessCriteria
access_criteria)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* Interface G AS:: Li braryManager

I+

[1* Description: This (abstract) object defines the basic
[1* functions conmon to all types of nmnagers.

I+

I+

//***

i nterface LibraryManager

UNCLASSIFHED

131

NO0101-G UNCLASSIFED 6 August 2001

{
UCO : NanmeLi st get _property_nanmes ()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

PropertylLi st get_property_values (in UCO : NaneLi st
desired_properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

Li braryLi st get _libraries ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* Interface G AS:: Request Manager

I+

[1* Description: This (abstact) object defines the basic
[1* functions conmon to nmanagers that use operations that
[1* generate request objects.

I+

I+

//***

i nterface Request Manager

{

Request Li st get_active_requests ()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

unsi gned | ong get _default _tineout ()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

voi d set_default _timeout (in unsigned |long new default)

UNCLASSIFHED

132

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

unsi gned | ong get _timeout (in Request aRequest)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

void set _tinmeout (in Request aRequest, in unsigned |ong
new |lifetine)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

voi d del ete_request (in Request aRequest)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:: AccessManager

I+

[1* Description: Provides functions to check and request the
[1* availability of Library products for specific purposes
I+

//***

i nterface AccessManager: Request Manager

{

UseMbdelLi st get _use_nodes ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
bool ean is_available (in U D::Product product, in UseMbdde use_node)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

UNCLASSIFHED

133

NO0101-G UNCLASSIFED 6 August 2001

/'l Returns the time (in seconds) estinated to put the requested product
/1l into the requested UseMbde. DOES NOT request a change in the

/1 availability of product.

unsi gned | ong query_availability delay (in U D::Product product,
in Avail abilityRequirenent availability_requirenent,
in UseMdde use_npde)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

short get_nunber _of priorities()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

Set Avai | abi | ityRequest set_availability (in U D::ProductlList products,
in Avail abilityRequirenment availability_requirenment, in UseMde
use_node, in short priority)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* The Managers
I*

//***

//***

[1* interface G AS:: QueryOrder Myr
[1* Derived from G AS: : Li braryManager and
[1* G AS: : Request Manager
I+
[1* Description: Provides operations to subnit a
[1* query based order.
I+
I+
UNCLASSIFIED

134

NO0101-G UNCLASSIFED 6 August 2001

//***

interface QueryOrderMyr: Li braryManager, Request Manager
{

Event Li st get_event _descriptions()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

Subm t Quer yOr der Request submit_query_order (

in Query aQuery,

in QueryLifeSpan I|ifespan,
in OrderType o_type,

in QueryOrderContents order,
in PropertyList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:: VideoMr

[1* Derived from G AS: : Li braryManager and G AS: : AccessManager
I+

[1* Description: Provides operations to retrieve video data
I+

I+ NOTE: This interface is TBR

//***

/[linterface VideoMyr : LibraryManager, AccessManager {
I}

//***

UNCLASSIFHED

135

NO0101-G UNCLASSIFED 6 August 2001

//***

[1* interface G AS:: OrderMr

[1* Derived from G AS:: LibraryManager and G AS:: AccessManager

I+

[1* Description: Provides operations to subnmit orders for Products
[1* contained in the Library:

I+

I+

I+

//***

i nterface OrderMyr: Li braryManager, AccessManager
{

UCO : NaneLi st get _package_specifications()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

Val i dationResults validate_order (in OrderContents order, in
PropertylLi st properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Order Request order (in OrderContents order, in Propertylist
properties)

rai ses (UCGO :Invalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:.: Dat aModel Myr
[1* Derived from G AS:: LibraryManager
I*

UNCLASSIFIED

136

NO0101-G UNCLASSIFED 6 August 2001

[1* Description: Provides operations to discover the el enents of
t he

[1* data nodel in use by the library
I+
I+
I+

//***

i nterface DatalMddel Myr: Li braryManager
{
UCO : AbsTi me get _data_nodel _date (in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

UCO : NaneLi st get_alias_categories(in PropertyList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

UCO : NameNaneLi st get |l ogical _aliases(in string category, in
PropertylLi st properties)

rai ses(UCO : I nvalidlnputParaneter, UCO :ProcessingFault,
UCO : Systenfaul t);

string get_logical _attribute_nanme (in ViewNane view nane,in
Conceptual Attri buteType attribute_type, in PropertylList properties,)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Vi ewLi st get _view nanmes (in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Attributel nformationList get_attributes (in ViewNane view nane,in
PropertylLi st properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

UNCLASSIFHED

137

NO0101-G UNCLASSIFED 6 August 2001

Attributel nformationLi st get_queryable_attributes (in ViewNane
vi ew_nane, in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

UCO : EntityGaph get _entities (in ViewNane view nane,in Propertylist
properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

AttributelnformationlList get _entity attributes (in Entity aEntity,in
PropertylLi st properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

Associ ationLi st get_associations(in PropertyList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

unsi gned short get_max_vertices(in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:.: CreationMr

[1* Derived from G AS: : Request Manager and

[1* G AS: : Li braryManager

[1* Description: Provides operations to request/noninate the
[1* archiving and catal oging of a new product to a Library.
I+

I+

//***

interface CreationMr: Li braryManager, Request Manager
{

UNCLASSIFHED

138

NO0101-G UNCLASSIFED 6 August 2001

Creat eRequest create (in UCO : Fil eLocationLi st new product,in
Rel at edFil eLi st related files, in UCO : DAG creation_netadata, in
PropertylLi st properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Cr eat eMet aDat aRequest create_netadata (in UCO : DAG
creation_netadata, in ViewNane view name, in Rel atedFileLi st
related files, in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Creat eAssoci ati onRequest create_association(in string assoc_nane,
in U D::Product view a_object,
in U D::ProductList view b _objects,
i n UCG : NaneVal uelLi st assoc_i nfo)

rai ses (UCO : I nvalidl nput Paranet er,
UCQO : Processi ngFaul t, UCO : Systenfaul t);

b

//***

[1* interface G AS:: Updat eMgr

[1* Derived from G AS:: LibraryManager, and G AS:: Request Manager
[1* Description: Provides operations to nodify, extend or delete
[1* existing catalog entries in a G AS Library.

I+

I+

//***

i nterface UpdateMr: LibraryManager, Request Manager

{
void set _lock(in U D::Product |ockedProduct)

UNCLASSIFHED

139

NO0101-G UNCLASSIFED 6 August 2001

rai ses(UCO :InvalidlnputParaneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Updat eRequest update (in ViewNanme view, in UCO : Updat eDAGLi st changes,
in RelatedFileList relfiles, in PropertylList properties)

rai ses(UCQO :InvalidlnputParaneter, UCO :ProcessingFault,
UCO : Systenfaul t);

Updat eByQuer yRequest update_by query(in UCG : NaneVal ue updated_attri bute,
in Query bgs_query,

in PropertyList properties)
rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault, UCO : Systenfault);
voi d release_lock(in U D::Product |ockedProduct)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

voi d del ete_product(in U D::Product prod)

rai ses(UCG : | nval i dl nput Paranet er, UCO : ProcessingFaul t,
UCQO : Syst enfaul t

)
b

//***

[1* interface G AS:: Catal ogWyr
[1* Derived from G AS:: Li braryManager and
[1* G AS: : Request Manager

I+

[1* Description: Provides operations to subnmit a query for
[1* processi ng.

I+

I+

//***

i nterface Catal ogMgr: Li braryManager, Request Manager
{

UNCLASSIFHED

140

NO0101-G UNCLASSIFED 6 August 2001

Subm t Quer yRequest submit_query (
in Query aQuery,
in UCO : NaneList result_attributes,
in SortAttributeList sort_attributes,
in PropertyList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

Hi t Count Request hit_count (in Query
aQuery, in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:: St andi ngQueryMyr

[1* Derived from G AS:: Li braryManager and

[1* G AS: : Request Manager

I+

[1* Description: Provides operations to subnit a
[1* st andi ng query.

I+

I+

//***

i nterface Standi ngQueryMr: Li braryManager, Request Manager
{

UNCLASSIFHED

141

NO0101-G UNCLASSIFED 6 August 2001

Event Li st get_event _descriptions()

rai ses (UCQO : ProcessingFault, UCO : Systenfault);

Subm t St andi ngQuer yRequest subnit_standi ng_query (

in Query aQuery,

i n UCO : NaneLi st
result_attributes,

in SortAttributelist
sort_attributes,

in QueryLifeSpan I|ifespan,
in PropertyList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:: Product Myr

[1* Derived from G AS: : Li braryManager and G AS: : AccessManager
I+

[1* Description: Provides operations to retrieve data about a
[1* speci fic data set.

I+

I+

//***

i nterface Product Myr: Li braryManager, AccessManager

{

Get Par anet er sRequest get _paraneters (in Ul D::Product product, in
UCO : NaneLi st desired_paraneters, in PropertylList properties)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

UNCLASSIFHED

142

NO0101-G UNCLASSIFED 6 August 2001

Rel at edFi | eTypeLi st get _related file_types(in U D::Product prod)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

Cet Rel at edFi | esRequest get _related files (in U D::ProductList
products, in UCG :FilelLocation |ocation, in RelatedFil eType
type, in PropertylList properties)

rai ses (UCG : I nvalidlnputParaneter, UCO : ProcessingFault,

UCO : Systenfaul t);

b

//***

[1* interface G AS:: |ngestMyr

[1* Derived from G AS:: Li braryManager and

[1* G AS:: Request Manager

I+

[1* Description: Provides operations to performbul k transfers
I+ of data between Libraries.

I+

I+

//***

i nterface | ngestMr: Li braryManager, Request Manager
{

/'l FileLocation contains a directory

I ngest Request bul k_pull (in UCO :FileLocation location, in
PropertyLi st property_list)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

/'l FileLocation contains a directory

I ngest Request bul k_push (in Query aQuery, in UCO :FilelLocation
| ocation, in PropertylList property_list)

UNCLASSIFHED

143

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

b

//***

[1* interface G AS:.: Request

I+

[1* Description: An (abstract) object that provides operations
[1* common to all forms of requests.

I+

I+

//***

i nterface Request

{

UCO : Request Descri ption get_request _description ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
void set _user_info (in string nessage)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

UCO : Status get_status ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
Del ayEsti mate get _renmi ni ng_del ay ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
voi d cancel ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
Cal | backl D regi ster_cal Il back (in CB:: Callback acall back)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

void free_call back (in CallbacklD id)

UNCLASSIFHED

144

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

Request Manager get _request _nmanager ()

rai ses (UCQO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:.: O der Request

[1* Derived from G AS: : Request

[1* Description: Returned by calls to order.
I+

I+

//***

i nterface OrderRequest: Request

{
UCO : State conpl ete (outDeliveryManifest prods)

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:: Subm t QueryOrder Request

[1* Derived from G AS: : Request

[1* Description: Returned by calls to submit_query_order.
I

I

//***

interface Subnit QueryOrder Request: Request
{

void pause()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

UNCLASSIFHED

145

NO0101-G UNCLASSIFED 6 August 2001

void resune()

rai ses (UCQO : ProcessingFault, UCO : Systenfault);

UCO : State conplete_list (out DeliveryManifestList prods)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : State conplete (out DeliveryManifest prods)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

b

//***

//***

[1* interface G AS:: CreateRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to create
I+

I+

//***

i nterface CreateRequest: Request

{
UCO : State conplete (out U D::ProductlList new products)

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:.: Creat eMet aDat aRequest
[1* Derived from G AS: : Request
I+
[1* Description: Returned by calls to create_netadata
I+
UNCLASSIFIED

146

NO0101-G UNCLASSIFED 6 August 2001

I1*

//***

i nterface CreateMetaDat aRequest: Request

{
UCO : State conplete (out U D::Product new _product)

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:: Updat eRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to update
I+

I+

//***

i nterface UpdateRequest: Request

{

UCO : State conplete ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

//***

[1* interface G AS:: Subm t QueryRequest

[1* Derived from G AS: : Request

I*

[1* Description: Returned by calls to query
UNCLASSIFIED

147

NO0101-G UNCLASSIFED 6 August 2001

I1*
I1*

//***

interface Subnit QueryRequest: Request
{
voi d set_nunber_of _hits (in unsigned |ong hits)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

UCO : State conplete DAG results (out QueryResults results)
rai ses (UCO : ProcessingFault, UCO : Systenfault);
UCO : State conplete_stringDAG results (out UCO : StringDAGLi st results)
rai ses (UCO : ProcessingFault, UCO : Systenfault);
UCO : State conplete XM__results (out UCO : XM.Docurnent results)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

b

//***

[1* interface G AS:: Subm t St andi ngQuer yRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to subnmit_standi ng_query
I+

I+

//***

i nterface Subnit Standi ngQuer yRequest : Request
{

voi d set_nunber_of _hits (in unsigned |ong hits)

rai ses (UCGO : I nvalidl nput Paraneter, UCO :ProcessingFault,
UCO : Systenfaul t);

unsi gned | ong get_nunber_of hits()

UNCLASSIFHED

148

NO0101-G UNCLASSIFED 6 August 2001

rai ses (UCO : ProcessingFault, UCO : Systenfault);

unsigned |l ong get_nunmber_of hits_in_interval (in unsigned |ong
interval)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO :ProcessingFault,
UCO : Systenfaul t);

unsi gned | ong get_nunber _of _interval s()
rai ses (UCO : ProcessingFault, UCO : Systenfault);
void clear_all()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

void clear_interval s(in unsigned |long num.intervals)

rai ses (UCGO : I nvalidl nput Paraneter, UCQO : ProcessingFault,
UCO : Systenfaul t);

void clear_before(in UCO:Tine relative_tine)

rai ses (UCGO : I nvalidl nput Paraneter, UCO : ProcessingFault,
UCO : Systenfaul t);

void pause()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

void resune()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : AbsTinme get _tine_last_executed()

rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : AbsTi ne get _tine_next_execution()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : State conplete DAG results (out QueryResults results)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : State conplete_stringDAG results (out UCO : StringDAGLi st results)

rai ses (UCQO : ProcessingFault, UCO : Systenfault);

UCO : State conplete XM__results (out UCO : XM.Docurent results)
rai ses (UCQO : ProcessingFault, UCO : Systenfault);

b

UNCLASSIFHED

149

NO0101-G UNCLASSIFED 6 August 2001

//***

[1* interface G AS:: SetAvail abilityRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to nakeAvail abl e
I+

I+

//***

interface SetAvail abilityRequest: Request

{
UCO : State conplete ()

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:: Hit Count Request

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to Hitcount
I+

I+

//***

i nterface HitCount Request: Request

{
UCO : State conpl ete (out unsigned | ong nunber_of hits)

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:: Get ParanetersRequest

UNCLASSIFHED

150

NO0101-G UNCLASSIFED 6 August 2001

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to get_paraneters
I+

I+

//***

i nterface GetParanetersRequest: Request

{

UCO : State conpl ete (out UCO : DAG par anet ers)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

UCO : State conpl ete_stringDAG (out UCQO : StringDAG par anet ers)
rai ses (UCO : ProcessingFault, UCO : Systenfault);

b

//***

[1* interface G AS:: |ngestRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to bul k_push and bul k_pul |
I+

I+

//***

i nterface | ngest Request: Request

{
UCO : State conplete ()

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:: GetRel at edFi | esRequest

UNCLASSIFHED

151

NO0101-G UNCLASSIFED 6 August 2001

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to get _related files
I+

I+

//***

i nterface CetRel at edFi | esRequest: Request

{
UCO : State conplete (out UCO : NaneLi st |ocations)

rai ses (UCO : ProcessingFault, UCO : Systenfault);
b

//***

[1* interface G AS:.: CreateAssociati onRequest

[1* Derived from G AS: : Request

I+

[1* Description: Returned by calls to create_association
I+

I+

//***

interface CreateAssoci ati onRequest: Request
{
UCO : State conplete ()
rai ses (UCO : ProcessingFault, UCO : Systenfault);

b
[] *R AR A Kk Ak Kk Kk Kk Kk Kk Kk Kk Kok Kok Kok Kok Kk Kk Kk K kK K Kk K kK Kk Kk K
[1* interface G AS:: Updat eByQuer yRequest
[1* Derived from G AS: : Request
[1* Description: Returned by calls to update_by_query
I*

UNCLASSIFHED

152

NO0101-G UNCLASSIFED 6 August 2001

//***

i nterface UpdateByQueryRequest: Request

{
UCO : State conplete ()

rai ses (UCQO : ProcessingFault, UCO : Systenfault);

}s /! end of npdule G AS

UNCLASSIFHED

153

NO0101-G UNCLASSIFHED 6 August 2001

Appendix B: Callback IDL

//***

II* interface GIAS::Callback

"

/[* Description: General callback interface

"

/I* NOTE: The Calback interface isimplemented on the

/¥ "client" sideto allow "servers" to notify clients of

/I* completion of requests.

"

/I* NOTE: Callback moduleis now compiled as a separate IDL file. Thiswill
/I* bechangedin GIAS 3.3

//***

#include “uco.idl”
modul e CB

{

interface Call back

{

void notify (in UCO :State theState, in
UCO: : Request Descri ption description)

rai ses (UCO :InvalidlnputParameter, UCO : Processi ngFault,
UCQO: : Systenfaul t);

void rel ease ()

rai ses (UCQO : Processi ngFault, UCO : SystenfFault);

UNCLASSIFIED

NO0101-G UNCLASSIFHED 6 August 2001

Appendix C UML Diagrams

The GIAS IDL interface has been modeled using Unified Modeling Language (UML). A brief description of the notation
used for the GIAS class diagrams was described in section 1.2. The purpose of this section isto provide a more detailed
overview of UML to show the reader the “what” and “how” of the use of the various UML diagrams for analysis and
modeling.

UML is based on three object-oriented modeling languages: 1) Object Modeling Technique (OMT) by James Rumbaugh;
2) Booch Method by Grady Booch; and 3) Object-oriented Software Engineering Method by Ivar Jacobson. Although all
three methods had alarge critical mass of users the authors were motivated to merge their modeling methods based on the
following rationale:

Their methods were evolving toward each other and dready shared many commonalties.

A common modding language would greatly enhance communication between desgners and
implementers.

A common modding language would gregtly enhance portability amongst object-oriented andyss
and design tool vendors.

A combination of the three methods would have a synergistic effect of combining lessons learned and
addressing problems that the former method did not address well.

UML has been submitted as a standard modeling language to OM G and can be obtained as OM G documents ad/97-01-01
% ad/97-01-14. Based on the above rationale and potential for standardization the justification was used for using UML
asthe modeling language for GIAS.

UML distinguishes between the notions of model and diagram. A model contains all of the underlying elements of
information about a system under consideration and does so independently of how those elements are visually
presented. A diagram isa particular visualization of certain kinds of elements from amodel and generally exposes only a
subset of those elements’ detailed information. A given model element might exist on multiple diagrams, but there is but
one definition of that element in the underlying model.

UML defines notation and semantics for the following diagrams:

classdiagrams - Isa collection of (atic) declarative model elements, such as classes, types, and
their relationships, connected as a graph and to each other and to their contents. Class diagrams
may be organized into packages either with their underlying models or as separate packages that
build upon the underlying mode packages.

use-case diagrams - Is a graph of actors, a set of use cases enclosed by a system boundary
communication (participation) associations between the actors and the use cases, and
generdizations among the use cases.

interaction diagrams

UNCLASSIFIED

155

NO0101-G

UNCLASSIFHED 6 August 2001

sequence diagrams - Shows objects participating in a set of interactions based on their “lifelines’
and the messages that they exchange arranged in time sequence.

collaboration diagrams - Shows interactions amongst a set of objects.

date diagrams - Is a bipartite graph of states and trangitions. It shows the sequences of states that
an object or an interaction goes through during its life in response to received stimuli, together with
its responses and actions.

component diagrams - |s a graph of components connected by dependency relationships. It shows
agpects of implementation, including source code structure and run-time implementation structure.

deployment diagrams - Is a graph of nodes connected by communication associetions. It shows
the configuration of run-time processing e ements and the software components, processes, and
objects that live on them.

UNCLASSIFIED

156

NO0101-G

Appendix D Reference OMG Standard IDL

Appendix E CORBA Standard Exceptions

#define ex_body {unsigned | ong m nor;

UNCLASSIFED

conpl eti on_status conpl et ed; }

6 August 2001

enum conpl eti on_status { COWPLETED_YES, COWVPLETED_NO
COVPLETED MAYBE} ;

enum exception_type {NO EXCEPTI ON, USER EXCEPTI ON
SYSTEM _EXCEPTI ON} ;

excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti

excepti

on

on

on

on

on

on

on

on

on

on

on

on

on

on

“UNKNOWN ex_body;
BAD_PARAM ex_body;
NO_MEMORY ex_body;
IMP_LIMT ex_body;
COW FAI LURE ex_body;
I NV_OBJREF ex_body;
NO PERM SSI ON ex_body;
| NTERNAL ex_body;
MARSHAL ex_body;

I NI TI ALI ZE ex_body;

NO | MPLEMENT ex_body;
BAD_TYPECODE ex_body;
BAD_OPERATI ON ex_body;

NO_RESOURCES ex_body;

UNCLASSIFHED

157

NO0101-G

excepti
excepti
excepti
excepti
excepti
excepti
excepti
excepti

excepti

on

on

on

on

on

on

on

on

on

UNCLASSIFED

NO_RESPONSE ex_body;
PERSI ST_STORE ex_body;
BAD | NV_ORDER ex_body;
TRANSI ENT ex_body;
FREE_MEM ex_body;

I NV_I DENT ex_body;

I NV_FLAG ex_body;

| NTF_REPOS ex_body;
BAD CONTEXT ex_body;

UNCLASSIFHED

158

6 August 2001

NO0101-G

UNCLASSIFED 6 August 2001

Appendix F Acronyms

APl

ClIF

CliP

CIIWG

CORBA

GIAS

IASS

IDL

NIMA

OGC

OMG

TBD

TBR

UCOSs

UlpP

USIGS

Application Program Interface

Common Imagery Interoperability Facilities
Common Imagery Interoperability Profile
Common Imagery Interoperability Working Group
Common Object Request Broker Architecture
Geospatial & Imagery Access Services

Image Access Services Specification

Interface Definition Language

Internationa Standard Organization

Nationd Imagery and Mapping Agency

Open GIS Consortium

Object Management Group

To Be Determined

To Be Resolved

USIGS Common Object Specification

USIGS Interoperability Profile

United States Imagery and Geospatia Information System

UNCLASSIFHED

159

NO0101-G UNCLASSIFED 6 August 2001

Appendix G: UML Statechart Diagrams

This appendix provides a set of UML statechart diagrams that describe a particular aspect of the GIAS's
implementation behavior. The audience for these diagrams are targeted for developersimplementing GIAS
clients and developersimplementing GIAS services. GIAS client developers will use these diagramsto infer
GIAS service behavior and GIAS service developers will use these diagrams as a specification for behavior
of GIAS services.

This appendix will evolve based on changesto the GIAS OMG IDL specification and expanded
documentation of GIAS UML design and i mplementation descriptions. At present this section includes
UML statecharts for interface generalizations of the GIAS IDL Interface Request, as shown in figure G-1%.

<<Interface>>
UpdateRequest]

<<Interface>> <<Interface>>
OrderRequest GetParametersReques|

<<Interface>>

HitCountRequest| <<Interface>>

+ complete()

<<Interface>>

IngestRequest +complete + complete
9 q + complete() plote) EEED

+ complete()

+ complete()

<<Interface>>

SubmitQueryOrderReques|

Query! q <<Interface>>
SubmitStandingQueryReqguest

+pause()

+resume()

+ set_number_of_hits()
+ get_number_of_hits()
+ get_number_of hits_in_interval(}

+complete()

<<Interface>>

Request + get_number_of_intervals()
Po—— .. + clear_all()
SubmitQueryRequest + get_reque_st_descrlpuon') + clear_intervals()
+ set_user_info() <_/ + clear_before()
| — >+ get_status() + pause()
+ setﬁnlumberfof,hnsq + get_remaining_delay() + resume()
: gg:plzz,?aﬁi{:?;ﬁz% + cancel() + get_time_last_executed()
' compleleixMLireSulls() + register_callback() + get_time_next_execution()
+ comzleteistrinaTable results(), + free_callback() + complete_DAG_results()
> | + get_request_manager() + complete_table_results()

+ complete_XML_results()

<<Interface>>

3 <<Interface>>
GetRelatedFilesReques] Aeff R

+complete() + complete()

<<Interface>> <<Interface>> <<Interface>>
Creat qciationReque: CreateReque: CreateMetaDataRequie:
+ complete() [+ complete() + complete()

G-1Interface Generalization for the GIAS I nterface Request

The following state diagrams reflect the state machine for each generalization of the GIAS Interface Request.
States marked with an asterisk indicate that a Callback (if one has been registered with this Request) is
triggered when that stateis entered.

1 N.B., these new State Diagrams supercede UCO: State/Status Terminal/Non-Terminal details described in
previous versions of the UCOS specifications.

UNCLASSIFHED

160

NO101-G UNCLASSIFIED 6 August 2001

SubmitStandingQueryRequest - State Diagram

SUBMIT_STANDING_QUERY_REQUEST_INITIAL_STATE

Start_Processin nding_Op_Cycle

N.B., for states
Queue_New_Submit |Standing_Query_Request SUSPENDED, ABORTED,

& CANCELED, detail is
removed for presentation.

SUSPENDED
*
B ABORTED
All_Results_Retrieve_for_Qurrent_Op_Cycle ' *
%
Some_Re:uIts_A
RESULTS_AVAILABLE ‘
*
CANCELED

Canceled_by—€tient

gin—Processing—h

All_Results_Computes

COMPLETED
*

Lifetirge_Expires
eguest_Manager

ifetfme_Expires

Deleted_via_R

E0BMIT_STANDING_QUERY_REQUEST_DELETED

G-2 UML Statechart — SubmitStandingRequest

UNCLASSIFHED

161

NO101-G UNCLASSIFIED

OrderRequest - State Diagram
ORDER_REQUEST_INITIAL_STATE

Queue_NeW_Order_Request
Start_Proc®sging_Order ﬁ
- 9- PENDING SUSPENDED
*
Stanj’r"essing
IN_PROGRESS ABO’I?TED

RESULTS_AVAILABLE
order Compltely processed

COMPLETED
*

Lifethge_Expires Lifeyifne_Expires itetife_Expires

Deleted_via_Reque${_Manager

®

G-3UML Statechart — Order Request

UNCLASSIFHED

162

6 August 2001

NO101-G UNCLASSIFIED

CREATE_META_DATQ@REQUEST_INITIAL_STATE

Queue_New_Request

Start_Processing_Create_Meta_Data_Request

PENDING

tart_Processing_Create_Mg aDa

SUSPENDED
*

ABORTED
*

RESULTS_AVAILABLE|
COMPLETED
*

CANCELED

Canceled_by—€tie

Lifetime_Expifes

Lifetighe_Expires

Deleted_via_Request_Manager

CREATE_META_ EQUEST_DELETED

G-4 UML Statechart CreateM etadataRequest

UNCLASSIFHED

163

6 August 2001

NO101-G UNCLASSIFIED

GetParametersRequest - State Diagram
GET_PARAMETERSRFQUEST_INITIAL_STATE

Queue_Get_Pprameters_Request
Start_Get_Paranfeters_Request PENDING SUSPENDED
*
StanGetParameler“Req
IN_PROGRESS ABORTED
*

RESULTS_AVAILABLE
COMPLETED
*

CANCELED

fient

- Lifeime_Expires
Lifetime_Expfres -

Lifetighe_Expires
Deleted_via_Request_Manager

GET_PARAMETYR&UEQUEST DELETED

@
G-5UML Statechart GetPar ameter sSRequest

UNCLASSIFHED

164

6 August 2001

NO101-G UNCLASSIFIED

HitCountRequest - State Diagram HIT_COUNT_REQUEST_INITIAL_STATE

Queue_New_Hit_Count_Request

Start_Processing_Hit_Count_Request PENDING SUSPENDED
*

Start_Processing_Hit_C un!

IN_PROGRESS| ABORTED
*

RESULTS_AVAILABLE
COMPLETED

CANCELED

Canceled_by—-€fient
Lifetfme_Expires

Lifetime_Expfres

Lifetighe_Expires
Deleted_via_Requést_Manager

O FIT_COUNT_REQUEST_DELETED

G-6 UML Statechart HitCountRequest

UNCLASSIFHED

165

6 August 2001

NO101-G UNCLASSIFIED

SetAvailabilityRequest - State Diagram
—. SET_AVAILABILITY_REQUEST_INITIAL_STATE

Queue_New_Sef Availability_Request

PENDING SUSPENDED

*
Start_Processing_SetNvailability Request
Start_Procepsing_Set_ Availabiity _Request

IN_PROGRESS|

ABORTED
*

Availability_Moge”Set

RESULTS_AVAILABLE

CANCELED
COMPLETED
*

ifefime_Expires

Lifetip®€_Expires

Lifetirge_Expires

Deleted_via_Request_Manager

®

G-7UML Statechart SetAvailabilityRequest

UNCLASSIFHED

166

6 August 2001

NO101-G UNCLASSIFIED 6 August 2001

CreateRequest - State Diagram CREATE_REQMEST INITIAL_STATE

Queue| Request
Start_Processing_{reate_Request PENDING SUSPENDED
*
Start_Processing_Creq e_Re
IN_PROGRESS, ABORTED
*

RESULTS_AVAILABLE
TRANSFER_COMPLET!
*
CANCELED
Canceled_by—€efier
1 compLETED
Lifetime~Expires or
Deleted »fa_Request_Manager

Lifetime_Expffes

Lifetigne_Expires
Deleted_via_Request_Manager

{

a
G-8 UML Statechart CreateRequest (j/NPS)

UNCLASSIFHED

167

NO101-G UNCLASSIFIED

INGEST_REQIBST_INITIAL_STATE

IngestRequest - State Diagram
Queue_New Ingest_Request

Start_Processing_|ngest_Request PENDING

SUSPENDED
*

Start_Processing_Inge|

ABORTED

Bulk_Pull_or_Bulk_Pdsh_Ready

RESULTS_AVAILABLE
COMPLETED
*

CANCELED

Lifetime_Expifes

Lifetighe_Expires

Deleted_via_Requegt_Manager

INGEST_N

gST_DELETED

G-9UML Statechart IngestRequest

UNCLASSIFHED

168

6 August 2001

NO101-G UNCLASSIFIED

SubmitQueryOrderRequest - State Diagram

SUBMIT_QUERY_ORDESRRFQUEST_INITIAL_STATE

Queue_New_Query_Order_Request

Start_Procesgsing_Order

PENDING SUSPENDED

*
Start_Pro ‘essing
IN_PROGRESS ABORTED
All results retrieved Some Results
from current Op Cycl Available

RESULTS_AVAILABLE
_* CANCELED

Query_Order_Completely_Processed

COMPLETED
*

Lifetwe_Expires Lifefifie_Expires itetifie_Expires

Deleted_via_Reques

SUBMIT_QUERY_O -:C) /REQUEST_DELETED

G-10 UML Statechart SubmitQueryOrder Request

UNCLASSIFHED

169

6 August 2001

NO101-G UNCLASSIFIED

SubmitQueryRequest - State Diagram
SUBMIT_QUERY_R&OUEST_INITIAL_STATE

irst_Op_Cycle

Start_Processing

mit_Query_Request

Queue_New_Su|

Start_Pr(

All_Results_Retrieve_for_Qurrent_Op_Cycle

Bults_Available

Some_Re]

RESULTS_AVAILABLE

rigger only first time state is entered

All_Results_Computed

G-11 UML Statechart SubmitQueryRequest

UNCLASSIFHED

170

6 August 2001

NO0101-G UNCLASSIFED

Appendix H: Points of Contact

NIMA/ATSR

Ron Burns, Nationa Imagery and Mapping Agency
Phone: 703.755.5630
Emal: BurnsR@nimamil

NIMA/ATSRI

Bill Young, Nationd Imagery and Mapping Agency
Phone: 703.755.5644
Emal: YoungW@nimamil

US GS Interface Definition & Implementation

Charlie Green, SI, Engineering Edge Alliance (Sierra Concepts, Inc).

Phone: 610.347.0602
Emal: cpg.sci@mindspring.com

UCOS & GIAS Specifications, RFCs & Support

Dave L utz, The MITRE Corporation
Phone: 703.883.7848
Emal: dlutz@mitre.org

US GSInteroperability Profile (UIP)

Bradley Bretzin, S, Engineering Edge Alliance (BoozeAllen & Hamilton)

Phone: 703.375.2034

UNCLASSIFHED

171

6 August 2001

NO0101-G UNCLASSIFED 6 August 2001

Emal: bretzinb@hbah.com

UNCLASSIFHED

172

